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Abstract

This correspondence comes to fill a gap in watermarking theory, analyzing the exact performance

of the Scalar Costa Scheme (SCS) facing additive Gaussian attacks when the usual approximation

of high-resolution quantization is not valid, thus taking into account the host statistics. The

analysis is focused on the assessment of the probability of error, showing new results, an although

it is valid in a general scenario, its practical interest is increased when SCS is used in conjunction

with the so-called spread-transform. The accomplished reformulation of the problem also permits

to show that the achievable rate of SCS is never worse than that of classical spread-spectrum-

based methods, as it was thought so far, and allows to establish interesting links with spread

spectrum and the Improved Spread Spectrum method.

1 Introduction

Quantization-based methods for data hiding are suboptimal but down-to-earth implementations

of Costa’s scheme [1], which approximate the random codebook of the latter by a deterministic

and structured one consisting of a set of quantizers. Amongst these methods, the Scalar Costa

Scheme [2] (SCS, also known as Distortion Compensated - Dither Modulation [3]) has become

one of the most popular ones, for its simplicity and good performance. However, from the

performance analyses made so far [2, 4], it can be drawn the misleading conclusion that spread-

spectrum-based schemes perform better than quantization-based ones in additive white Gaussian

noise (AWGN) channels for high noise levels. Clearly, this is a contradictory result whose

acceptance would imply that SCS actually may do worse than spread spectrum (SS) in cancelling

host interference, although it is well known that SS does not perform any kind of host rejection.

We will show here that the former result is only due to an inaccurate approximation used

for simplification of the performance analysis. The fundamental assumption when analyzing

data hiding methods based on quantizers [2]-[7] is that the host pdf can be considered to be

flat (hereafter, flat-host assumption/approximation): according to high resolution quantization

theory, the pdf of the host signal is assumed to be uniform inside each quantization cell, and

the host variance is assumed large enough so as all the centroids occur with equal probability;

this is equivalent to saying that the host variance, σ2
x, is infinite, which implies an infinite

document to watermark ratio (DWR). This way, the host statistics are disregarded and the

analysis is simplified at a great extent. However, performance independence with respect to

DWR is only possible when perfect host rejection is achieved, which is what happens with
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Costa’s construction, but not with SCS. On the other hand, the flat-host assumption may lead

to significant errors when the ratio between the host variance and the volume of the quantization

cell is small, a common situation when SCS is used in conjunction with the so-called spread-

transform, originally proposed in [3], which is widely used in robust watermarking applications.

In the remainder of this correspondence we shall restrict our attention to SCS, and the

host signal will be statistically modeled by a Gaussian distribution for three reasons: first,

for mathematical convenience, to derive some theoretical results; second, for providing a fair

comparison between the results obtained here for SCS and those obtained by Costa and the

well-known ones for SS (both under the assumption of Gaussian hosts); finally, because the

Gaussian distribution accurately models the projected host for a wide range of host pdf’s when

dealing with methods based on the spread-transform, as a consequence of the central limit

theorem. Similar results have been obtained for Laplacian and uniform host distributions, but

these will not be discussed here due to lack of space.

The remaining of this correspondence is organized as follows. The following section presents

the theoretical framework, introduces the notation and the fundamentals of SCS and DC-QP,

a generalization of SCS based on the spread-transform. In Section 3, the performance of these

methods is assessed from the point of view of the probability of error, stressing the differences

with the results obtained under the flat-host assumption, while Section 4 recomputes the achiev-

able rates of SCS. Section 5 shows the link between SCS and Improved Spread Spectrum [8],

comparing their performance, and finally, the conclusions are summarized in Section 6. Through-

out the text, we will use uppercase letters to denote random variables and lowercase letters to

denote their specific values; vectors will be written in boldface.

2 Problem formulation

The considered scenario is the same as that of [2]. An equiprobable watermark message m,

belonging to the D-ary alphabet M = {0, 1, . . . ,D − 1}, is embedded into an independent and

identically distributed (i.i.d.) host signal X. In SCS, the watermarked signal y is generated by

adding a fraction of the quantization error to x, scaled by a distortion compensation parameter

α ∈ [0, 1],

y = x + α (QΛm(x) − x) = QΛm(x) + (1 − α) (x − QΛm(x)) , (1)
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where QΛm is a uniform scalar quantizer with its centroids distributed along the points defined

by a shifted lattice Λm, according to the to-be-transmitted symbol m

Λm , ∆Z − m
∆

|M|
− s, (2)

being ∆ the quantization step, |M| the size of the alphabet, and s an arbitrary value, usually

named dither, that may be made key-dependent in order to improve security by randomizing the

codebook; however, unless explicitly stated, in this correspondence the dither will be regarded

to as deterministic, with value s = −∆/4, so as to produce a symmetric codebook when binary

signalling is used. The pdf of Y can be computed by taking into account that scalar quantization

with distortion compensation can be thought of as a random variable transformation. Let ck,m

be the k-th centroid in QΛm(·), and let us define c+
k,m , ck,m + ∆

2
and c−k,m , ck,m − ∆

2
. Now

consider the following transformation resulting from Eq. (1):

yk,m = g(xk,m, ck,m, α) , (xk,m − ck,m)(1 − α) + ck,m. (3)

The expression of the watermarked signal conditioned on c−k,m ≤ x < c+
k,m and on the message

M = m reads

fYk,m
(yk,m) =

fXk,m
(xk,m)

|g′k,m(xk,m)|
=

fXk,m

(

yk,m−ck,m

1−α
+ ck,m

)

1 − α
,

with fXk,m
the pdf of X conditioned on the interval [c−k,m, c+

k,m), so the pdf of the watermarked

signal conditioned on the transmitted message M = m is given by

fY |M (y|M = m) =
∞

∑

k=−∞

fYk,m
(yk,m)

(

FX(c+
k,m) − FX(c−k,m)

)

,

where FX(x) denotes the cumulative density function of X. Finally, the pdf of the watermarked

signal is

fY (y) =
∑

m∈M

Pr{M = m}fY |M (y|M = m).

The received signal z results from the addition of Additive White Gaussian Noise (AWGN) N ,

which we assume to be independent of Y . Thus, the pdf of Z is given by the convolution of

fY (y) with an appropriate Gaussian pdf. Unfortunately, no closed form exists in a general case

for the resulting pdf’s, so we must resort to numerical computation for assessing the theoret-

ical performance of SCS. The embedding process is parameterized by α and the Document to
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Watermark Ratio, defined as λ , σ2
x/Dw or DWR , 10 log10 λ, with σ2

x being the host variance

and Dw the embedding distortion, which is defined in a mean squared error (MSE) sense,

Dw =
1

|M|

∑

m∈M

∫

(α (QΛm(x) − x))2fX(x)dx, (4)

being fX(x) the pdf of the host signal. Once again, the value of Dw must be calculated in a

numerical manner. The attacking channel is parameterized by the Watermark to Noise Ratio,

defined as ξ , Dw/Dc or WNR , 10 log10 ξ, being Dc the distortion introduced by the channel

(measured again in MSE sense), which in our case is equal to the noise variance, σ2
n. Once

λ and ξ have been defined, it is straightforward to define the Document to Noise Ratio as

DNR = 10 log10(λ · ξ) = DWR + WNR to account for the relative powers of host and attacking

noise. Finally, we want to note that both the host X and the channel noise N will be regarded

as zero-mean signals without loss of generality.

As it was pointed out in Section 1, the analysis carried out in this correspondence is crucial

for schemes which perform quantization in projected domains. One of such schemes is the so-

called DC-QP (Distortion Compensated - Quantized Projection), proposed in [4].1 In DC-QP,

the correlation between x (a vector containing L host samples) and a pseudorandom vector v

such that ||v||2 = L, is first computed, obtaining a scalar value rx =
∑L

k=1 x[k]v[k] that is

uniformly quantized as in SCS. Let ρm = α(QΛm(rx) − rx)/L, the watermarked vector is then

given by y = x + w, with w = ρmv. As in [2] and [3], we will adopt the term spreading

factor to denote the parameter L. The decision of the embedded symbol is made upon the

cross-correlation between the received signal z and the projection vector v,

rz =
L

∑

k=1

z[k]v[k] = rx + rw + rn, (5)

with rw, rn denoting the projected watermark and noise, respectively. The embedding distor-

tion in this case is an extension of (4) to the case of multiple samples, and is calculated as

Dw = 1
L

∑L
k=1 E{w2[k]}. Under these conditions, it is easy to show that Dw = σ2

rw
/L2, and

the variances of the host signal and the noise after projecting are respectively given by σ2
rx

= Lσ2
x

and σ2
rn

= Lσ2
n. Let λp , σ2

rx
/σ2

rw
and ξp , σ2

rw
/σ2

rn
be the document to watermark ratio and

the watermark to noise ratio, respectively, in the projected domain; λ and ξ can be now written

as

λ =
σ2

x

Dw

= Lλp, ξ =
Dw

σ2
n

=
1

L
ξp (6)

1In its simplest form, which we analyze here, DC-QP is totally equivalent to ST-SCS (Spread Transform -

Scalar Costa Scheme) [2].
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If we define DWRp , 10 log10(λp) and WNRp , 10 log10(ξp), then (6) implies that, when using

a spreading factor L,

WNRp = WNR + 10 log10 L, (7)

whereas

DWRp = DWR − 10 log10 L. (8)

Obviously, SCS can be viewed as a particular case of DC-QP for L = 1.

3 Probability of error

Decoding in SCS is usually performed by means of minimum distance: assuming binary sig-

nalling, i.e., m ∈ {0, 1}, let R0 and R1 be the correct decision regions when the transmitted

symbols are 0 and 1, respectively. The probability of error (which in this case coincides with

the bit error probability, BER) is given by

Pe = Pr{M = 1}

∫

R0

fZ|M (z|M = 1)dz + Pr{M = 0}

∫

R1

fZ|M (z|M = 0)dz, (9)

which must be solved, in general, by means of numerical integration. This BER was calculated

in [4] by resorting to the flat-host approximation, so it is independent of the DWR, and we will

denote it here by Peflat
(ξ, α). Instead, the BER calculated under the new theoretical framework

presented in Section 2 actually depends on the DWR, so it will be denoted by PeSCS
(λ, ξ, α).

From the discussion in the previous section, it is evident that the BER for DC-QP can be

obtained simply by substituting λ and ξ by respectively λp and ξp from (6), in the corresponding

expression for SCS, i.e.

PeDCQP,L
(λ, ξ, α) = PeSCS

(

1

L
λ, Lξ, α

)

. (10)

The key issue in DC-QP is the fact that, when the value of parameter L grows, the quantization

step must be increased in order to keep constant the embedding distortion; for instance, for

DWR = 25 dB and L = 32, we have, according to Eq. (8), that DWRp ≈ 10 dB. For illustrative

purposes, Figure 1-(a) shows the comparison, for DWR = 10 dB and negative WNR’s, between

Peflat
and PeSCS

, supporting the results with empirical data by means of Monte-Carlo simula-

tions. It can be seen that the error due to the flat-host assumption is significant for small values

of α; the reason is that as long as α is decreased, the quantization step ∆ grows for a fixed

host variance σx in order to maintain the DWR (i.e., λ) constant, so the flat-host assumption
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Figure 1: (a) BER in terms of α. (b) Minimum probability of error. A Gaussian host and DWR = 10

dB was considered in both plots.

progressively loses its validity. In fact, using the results from [4] Sect. V.A,2 it is easy to see

that in order to keep the DWR constant, when α → 0, σ2
x/∆2 goes to zero as α2λ/16, thus

invalidating the assumption of high resolution quantization. Now, let us denote by ±x0, with

x0 , ∆/4, the two centroids closest to the origin. Clearly, when σ2
x/∆2 → 0, the probability

that X is quantized to some other centroid than ±x0 is negligible.

With ±x0 as the only significant centroids it is possible to derive a theoretical expression for

the pdf of the received signal; in this case, the embedding function reads as

y = (−1)mx0 + (1 − α)(x − (−1)mx0) = (1 − α)x + (−1)mαx0. (11)

Recalling that y = x + w, it is easy to realize that

w = α((−1)mx0 − x). (12)

Although the embedding function given in (11) accurately describes the behavior of SCS for

small WNR’s, there is no reason not to consider (11) as a data-hiding scheme on its own, valid

for any WNR and α. The embedding process of this scheme resembles SS-based watermarking,

with a subtle difference: in the case of SS, the watermark w has a fixed amplitude, independently

of the host sample (we are neglecting here any issue concerning perceptual masking), whereas

here w depends on the distance of the considered host sample to the corresponding centroid and

on parameter α. This is why we will refer to this scheme in the sequel as DC-SS (Distortion

2Note that the step size used there doubles that used here.
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Compensated - Spread Spectrum). From Eq. (11), it follows that

fY |M (y|M = m) = N ((−1)mαx0, σ
2
x(1 − α)2), (13)

and

Dw = α2(x2
0 + σ2

x). (14)

Provided that both the watermarked signal Y and the noise N follow a Gaussian distribution, the

received signal Z conditioned on the transmitted message M = m will continue to be Gaussian,

fZ|M (z|M = m) = N ((−1)mαx0, σ
2
x(1 − α)2 + σ2

n). (15)

By taking into account (15) and considering the symmetry of the received signal, minimum

distance decoding in DC-SS is equivalent to simple sign-decision, hence

PeDC−SS
= Q

(

√

SNRDC−SS

)

, (16)

with

SNRDC−SS ,
α2x2

0

σ2
x(1 − α)2 + σ2

n

=
ξ(1 − λα2)

1 + λξ(1 − α)2
. (17)

Under this conditions, the optimum α which minimizes the probability of error can be calculated,

yielding

α∗
DC−SS(λ, ξ) =

1 + ξ + λξ − [(1 + ξ + λξ)2 − 4λξ2]
1

2

2λξ
. (18)

Figure 1-(b) shows the minimum probability of error achievable for SCS, numerically op-

timized over α, both under the flat-host assumption and derived with the exact pdf’s. Fur-

thermore, the BER for SS is also plotted, whose theoretical expression is given by PeSS
=

Q
(

1/
√

(λ + ξ−1)
)

, which obeys to the embedding rule y = x + w, being w the watermark

with fixed amplitude, according to spread spectrum watermarking theory. As we can see, the

flat-host assumption actually overestimates the true probability of error for low-WNR regimes,

and might lead to the wrong conclusion that SS can perform better than SCS for such regimes.

The BER for DC-SS (with the optimum α given by Eq. (18)) is also plotted in Figure 1-(b),

noting that it matches with remarkable precision the true probability of error of SCS for small

WNR’s, as we pointed out above.

Bear in mind that the results presented in Figures 1-(a) and 1-(b) are for DWR = 10 dB,

but the effective DWR for DC-QP in the projected domain, namely DWRp, may vary in a wide

range depending on the spreading factor L, in such a way that for common values of L (in
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Figure 2: WNRth vs. DWRp for a Gaussian host.

practical robust watermarking scenarios) it is even possible to have DWRp < 0 dB; for instance,

with DWR = 25 dB and L = 1000, DWRp = −5 dB. Actually, for each DWRp there exists a

value of WNRp, which we name WNRth, at which the true BER breaks off from that obtained

under the flat-host assumption in such a way that, below WNRth, the error introduced by the

flat-host assumption is significant. Such value of WNRth is shown in Figure 2, where it can be

seen that it grows very steeply for negative values of DWRp, which means that, for increasing

values of L, the error due to the flat-host assumption may be dramatically increased for a wide

range of WNR’s. This behavior is illustrated in Figure 3 showing that, for example, for L = 800

and P ∗
e = 10−5, the gap with the exact curve is about 0.9 dB.

4 True achievable rates of SCS

The analysis accomplished in Section 3 provides a measure of performance for SCS when a

particular decoder is used. Nevertheless, from a theoretical point of view, is useful to know the

inherent performance limits of a certain data hiding scheme. This is why we will calculate here

the performance of SCS in terms of achievable rate, as Eggers did in [2], but considering this

time the exact pdf’s for finite DWR’s. The achievable rate is defined as

R(λ, ξ) , max
α

I(Z; M), (19)

where I(Z, M) denotes the mutual information between Z and M , which is given by [9]

I(Z; M) = h(Z) − h(Z|M)
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= −

∫

fZ(z) log2 (fZ(z)) dz

+
1

|M|

∑

m∈M

∫

fZ|M (z|M = m) log2

(

fZ|M (z|M = m)
)

dz. (20)

The results in this section are derived also for Gaussian hosts and binary signalling (m ∈

{0, 1}). Figure 4-(a) shows the achievable rates of SCS for negative WNR’s, considering two

different DWR’s: 10 and 20 dB. For comparison purposes, the capacity predicted by Costa [1],

CCosta = 0.5 log2 (1 + ξ), and the capacity for SS with Gaussian host, CSS = 0.5 log2 (1 + ξ/(λξ + 1)),

are also plotted. Figure 4-(a) shows that (at least for Gaussian hosts and binary signalling) the

true achievable rates of SCS are always above those of SS, contrarily to what was reported

so far in the literature. It can be seen that the performance of SCS depends, indeed, on the

host statistics, and similarly to what happened with the probability of error, the error due to

the flat-host assumption is significant under a certain WNR, which depends on the considered

DWR. Hence, the results provided by the information-theoretic analysis are in agreement with

those obtained in Section 3 in terms of probability of error.

Bear in mind that optimization over parameter α is carried out here for a different theoretical

framework from that considered by Eggers, so it is not surprising that the optimum α differs

from that obtained in [2]. The new optimum value for α is shown in Figure 4-(b), revealing

that it is actually discontinuous, and also depends on the DWR: below a certain WNR, it gets

closer to the value derived by Costa in [1], α∗
Costa = 1/(1 + ξ−1), and significantly differs from

that obtained by Eggers. The reason for the discontinuity in the optimum value of α can be

explained by the existence of two local maxima in the curves of the mutual information when

they are expressed in terms of α; this way, when the location of the global maximum changes

sharply, so does the optimum α. It is interesting to note that, if we would have resorted to the

flat-host assumption, there would exist only one maximum in those curves.

Similarly to the analysis of the probability of error, the performance of SCS in terms of the

achievable rate can be theoretically analyzed for low-WNR regimes, by resorting to the DC-SS

scheme: it can be shown that the mutual information in a channel like that defined by Eq. (15),

with binary signalling, is a monotonically increasing function of SNRDC−SS , given in Eq. (17).

Hence, the parameter α which produces the maximum achievable rate, α∗
DC−SS , is that given in

Eq. (18). For small values of SNRDC−SS , the following approximation for the achievable rate

of DC-SS can be shown to be asymptotically tight as SNRDC−SS goes to zero:

RDC−SS(λ, ξ, α) ≃
1

2
log2(1 + SNRDC−SS). (21)
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Figure 3: Comparison between BER’s obtained for DC-QP with exact analysis and flat-host approxi-

mation, considering DWR = 20 dB and different spreading factors.

Inserting (18) in (21) yields the following achievable rate

R∗
DC−SS(λ, ξ) ≃

1

2
log

(

1 +
1

2

[

ξ − λξ − 1 + [(1 + ξ + λξ)2 − 4λξ2]
1

2

]

)

. (22)

It was shown in [10] that Equations (22) and (18) give excellent estimates for the achievable rate

of SCS and for the optimum α when the assumption of only two meaningful centroids holds.

Moreover, it is not difficult to prove formally that DC-SS always performs better than SS, at

least for DWR’s greater than 0 dB.

4.1 Remarks

When the ratio σx/∆ is sufficiently small, the absolute location of the centroids becomes relevant

in the calculation of I(Z; M). In fact, it has been observed that, for the case of zero-mean

symmetric host pdf’s (e.g. Gaussian and Laplacian), those lattices given in Eq. (2), with

s = −∆/4, maximize the rate.3 This implies that the use of a different dither may incur a

loss of performance, which is the case, for instance, of a dither uniformly distributed over one

quantization bin, i.e. S ∼ U(−∆/2, ∆/2] [2]. Although the results will not be plotted here due

to lack of space, losses of up to 2 dB in the achievable rate with respect to the deterministic

case s = −∆/4 have been observed due to the use of the uniform dither. As a final remark, the

modulo-∆ reduction of the received signal considered in [2] may also imply a loss of performance,

as a consequence of the data processing inequality [9].

3Actually, this choice of dither produces the same achievable rate as a pseudorandom dither whose samples

are uniformly drawn from {±∆/4}. In addition, this is also the dither which minimizes the probability of error.
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Figure 4: (a) R vs. WNR for binary SCS (optimum α derived experimentally). (b) Optimum distortion

compensation parameter. A Gaussian host was considered in both plots.

5 Connections between SCS and ISS

The approximation of SCS via DC-SS resembles the Improved Spread Spectrum (ISS) scheme

proposed by Malvar and Florêncio [8], which is a generalized spread spectrum method with side

information. Several versions of ISS are described in [8], but we only consider here the linear

one, which despite being the worst in terms of performance, permits us to show clearly the

connections between SCS and ISS; for the same reason, we only pay attention to the case of

embedding in one sample, although similar relations can be derived between DC-QP and ISS

for embedding in projected domains.

The considered scenario will be again the same of [2]. In classical spread spectrum, the

embedding function particularized for one sample is simply y = x+ bσu, with b = ±1 depending

on the to-be-transmitted bit, and σu the watermark amplitude. In the linear version of ISS, the

embedding function can be written as

y = x + γbσu − νx = (1 − ν)x + γbσu, (23)

being γ and ν two parameters in the range [0,1] that control the watermark amplitude and host

rejection, respectively (note that spread spectrum is a particular case of (23) for γ = 1 and

ν = 0). It can be inferred from (23) that

Dw = γ2σ2
u + ν2σ2

x, (24)

fZ|B(z|B = b) = N (γbσu, (1 − ν)2σ2
x + σ2

n). (25)
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By comparing equations (15) and (25), it can be noted that σu plays in (25) the role of the

centroid x0 in (15). The main difference between ISS and DC-SS is the fact that ISS uses two

parameters for embedding, namely γ and ν, whereas DC-SS uses only one; however, parameter

γ in ISS is actually fixed to make the distortion (24) equal to that of spread spectrum, yielding

γ =
√

(σ2
u − ν2σ2

x)/σ2
u, and the performance of ISS depends solely on the following signal to

noise ratio:

SNRISS ,
σ2

u − ν2σ2
x

(1 − ν)2σ2
x + σ2

n

, (26)

which, after some straightforward algebraic manipulations, can be shown to be equal to (17), so

PeISS
= PeDC−SS

. Moreover, similarly to DC-SS, the achievable rate of ISS can be estimated by

maximizing over ν the following expression:4

RISS(λ, ξ) ≃
1

2
log2(1 + SNRISS), (27)

thus RISS = RDC−SS and ν∗ = α∗
DC−SS .

Under the light of this analysis we can conclude that the performance of ISS and SCS are

approximately equivalent for small WNR’s; nevertheless, note that SCS (and consequently DC-

QP) outperforms ISS when the WNR increases, as it can be seen in Figure 5, where the BER

of SS is also plotted for illustrative purposes. The BER of SS and ISS when L > 1 can be

easily obtained by adapting the corresponding equations given in Section 3 for SS and DC-SS,

respectively.

6 Conclusions

The flat-host assumption must be carefully handled when analyzing quantization-based data-

hiding schemes, because it may lead to underestimating their true performance; in fact, the

analysis accomplished in this correspondence has shown that when their parameters are opti-

mally selected, and under AWGN attacks, the theoretical performance of SCS is better than

that of SS for the whole range of watermark to noise ratios, contrarily to what was thought so

far. The other key aspect of this paper is the theoretical analysis of SCS when only two centroids

have non-negligible occurrence probabilities, elucidating the behavior of SCS for small WNR’s,

and also allowing the derivation of some new interesting connections between SCS, SS and ISS.

and from a practical point of view, Finally, we have seen that the consideration of finite DWR’s

4As in the case of DC-SS, the approximation in (27) is valid for small values of SNRISS (e.g. in the low-WNR

regime).
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Figure 5: ISS vs. SCS, with DWR = 20 dB and different spreading factors.

is crucial in the analysis of SCS when embedding takes place in a projected domain, as in the

DC-QP scheme, due to the reduction of the effective DWR. Nevertheless, we must note that

our results have been derived for the AWGN channel, but there may exist other scenarios where

spread-spectrum-based approaches perform better than quantization-based ones.
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