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ABSTRACT

In this paper, we consider security-privacy issues in authen-
tication techniques based on the extraction of common ran-
domness. We demonstrate that the key rate-privacy leak pairs
can be enhanced using reliable components extraction from
specially designed random projections. The decrease of bit
error probability is estimated and its impact on the key rate
and privacy leak is evaluated. Several authentication schemes
with new helper data protocol are proposed.

1. INTRODUCTION

Recently, the authentication of humans and physical objects
based onbiometrics and physically unclonable functions
(PUFs) underwent a considerable evolution enabling to intro-
duce crypto-based security into the analog noisy world [1].
These new techniques are able to overcome the fundamental
sensitivity issue of classical cryptographic encryption and
one-way functions to small noise in input data by trade-offing
the security and robustness to noise. The inherent feature of
practically all state-of-the-art authentication protocols robust
to noise is the storage of some additional information (a.k.a.
helper data) assisting in the reliable extraction of acommon
secretat the enrollment (encoder) and authentication (de-
coder) sides [1, 2, 3]. At the same time, since the helper data
is somehow input dependent, it raises natural concerns that
it should provide little information about the secret extracted
from the noisy data (secrecy leak) and input itself (privacy
leak). The secrecy leak needs to be small to prevent system
abuse by theimpersonation attack, when the attacker tries
to construct artificial biometrics or PUFs that can pass the
authentication based on the disclosed templates. A small
privacy leak is required to protect some sensitive information
that can be extracted from the inputs. The schematic diagram
of helper data based authentication is shown in Fig. 1. The
main idea behind this kind of authentication is based on the
Wyner-Ziv binning principle used for source coding with side
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Fig. 1. Authentication based on helper data.

information [4], when a compressed versionU of input data
X is constructed and the keyS and helper dataM are gen-
erated as functions ofU. Roughly2NI(U ;X) U sequences
are generated and randomly distributed into approximately
2N(I(U ;X)−I(U ;Y )) bins, each containing about2NI(U ;Y ) se-
quences. The bin indexM serves as the helper data and the
sequence indexS within the bin is the key. The secure sketch
approach [3] and Slepian-Wolf based authentication using
syndrome coding [2] are exactly based on this architecture.
The authentication layer is based on the classical crypto-
graphic authentication as for the noiseless digital inputs. At
the same time, the authentication system should satisfy:

reliability: Pr[Ŝ 6= S] ≤ ǫ, (1)

key rate:N−1H(S) ≥ Rs, (2)

secrecy leak:I(S;M) ≤ Nǫ, (3)

privacy leak:I(X;M) ≤ N(Lp + ǫ), (4)

with small nonnegativeǫ. The secrecy leakI(S;M) can be
made arbitrary small by proper randomization and one can
control the trade-off between the privacy leakLp and key rate
Rs by the different choices ofU. It was demonstrated that
this trade-off can be [5, 6]:

Rs ≤ I(U ;Y ), (5)

Lp ≥ I(U ;X) − I(U ;Y ). (6)

The key rate can be maximized by settingU = X that yields:

Rs ≤ I(X;Y ), (7)

Lp ≥ H(X|Y ). (8)



Such a selection of a compressed versionU mimics the
Slepian-Wolf lossless distributed source coding of discrete
sources used in [2]. For the i.i.d. Gaussian setup with
Y = X + Z andX ∼ N (0, σ2

XIN ) andZ ∼ N (0, σ2
ZIN ),

it reduces to:
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. If the above setup is
converted into binary form based on binary quantization, one
obtains the Slepian-Wolf scheme with:

RB
s ≤ I(Bx;By) = 1 − H(Bx|By), (11)

LB
p ≥ H(Bx|By), (12)

whereH(Bx|By) = H2(P̄b) = −P̄b log2 P̄b−(1−P̄b) log2(1−
P̄b) that is the binary entropy; and for the equilikely bits
H(Bx) = 1 and the bit error probabilitȳPb (cross-over prob-
ability for Binary Symmetric Channel (BSC) linkingBx and
By) is found as:

P̄b =
2

π
arctan

(
√

1 − ρXY

1 + ρXY

)

=
1

π
arccos(ρXY ). (13)

Therefore, the key rate-privacy leak pair is completely defined
by P̄b that in turn is defined byρ2

XY .
Tuyls et. al. considered two practical setups based on

the above theoretical framework of helper data assisted au-
thentication [7]. The first setup is based on thesecret extrac-
tion from significant components[8] and the second one is
based on thesecret extraction from binarized dataconsidered
above using error-correction codes (ECC). The main idea be-
hind the first setup is to apply the Fisher discriminative trans-
form to the input data and to extract the most reliable compo-
nents possessing a magnitude higher then a certain threshold.
Thus, the helper dataM is used to communicate the infor-
mation about these components to the decoder. The scheme
is 0-secrecy leaking, i.e.,I(S;M) = 0, ans its robustness
in terms ofP̄b was upper bounded according to Bernstein’s
inequality. The privacy of this scheme was not theoretically
analyzed. The second setup is based on the ECC implemen-
tation, where it was also shown thatI(S;M) = 0 and the
key rate-privacy leak pair coincides with (11)-(12). The rate
of ECC is proportional toH2(P̄b) that should ensure reliable
key retrieval at the decoder side.

Both techniques are facing several deficiencies that we
will address in this paper. In the first case, the application
of Fisher transform requires knowledge of the input data and
noise statistics in terms of their covariance matrices to per-
form the diagonalization. It can be estimated off-line but it
still requires a quite significant amount of training data. Such
a transform is data-dependent and the addition of new entries

might also request the re-training that does not ensure back-
ward compatibility. Moreover, the independence and Gaus-
sianity of the transformed coefficients are desirable. Addi-
tionally, the extraction of significant components based on
the absolute value thresholding leads to a variable template
length. This requires an additional coefficient selection and
the synchronization between the encoder and decoder. Fi-
nally, even though the significant component extraction based
on the public-based Fisher transform is0-secure, it raises cer-
tain privacy preserving issues. In this paper, we will show that
the significant components are collinear to the basis vectors
of the Fisher transform. The public information about these
basis vectors even with the secret preservation of their signs
reveals significant information to the attacker aboutX. The
second setup is based on the binarized data and information
about the reliability is completely disregarded thus leading to
relatively highP̄b and sequentially to the reduction of key rate
and increase of the privacy leak.

Therefore, the goal of this paper is to design a data-
independent transform for the significant component extrac-
tion and reduce the privacy leak due to the helper data. To
achieve this goal, we introduce a generic random transform
with a fixed number of reliable coefficients and demonstrate
the impact of side information accuracy about the significant
components on̄Pb in Section 2.1. Based on these results,
we propose several authentication schemes with enhanced
privacy in Section 2.2. The results of computer simulation
are presented in Section 3. Section 4 concludes the paper.

2. PROPOSED AUTHENTICATION SYSTEM

In this paper, we will target the key rate maximization ap-
proach described in Section I that results in the selectionU =
X with the upper bound on the key rateRs (7). Therefore,
our primary goal is to reduce the privacy leak of both practi-
cal systems considered above.

2.1. Reliable components extraction

The extraction of significant components in the scope of this
paper is performed based on the random projection transform.
This transform can also be considered as a mapping of the
original datax to somesecureandrobustdomain:

x̃ = Wx, (14)

wherex ∈ R
N , x̃ ∈ R

L, W ∈ R
L×N andL ≤ N and

W = (w1,w2, · · · ,wL)T consists of a set of projection ba-
sis vectorswi ∈ R

N with 1 ≤ i ≤ L. Instead of following a
particular consideration of mappingW, we will assume that
W is a random matrix. The matrixW has the elementswi,j

that are generated from some specified distribution.L × N
random matrixW whose entrieswi,j are independent realiza-
tions of Gaussian random variablesWi,j ∼ N (0, 1

N
) presents

a particular interest for our study. In this case, such a ma-
trix can be considered as an almostorthoprojector, for which



WWT ≈ IL. Moreover, the selection of basis vectors with
Gaussian distribution also guarantees the Gaussian distribu-
tion of projected coefficients.

The second step also uses a possibly key-dependent la-
beling or Grey codes to ensure closeness of labels for close
vectors. The most simple quantization or binarization of ex-
tracted features is known assign random projections:

bxi
= sign(wT

i x), (15)

wherebxi
∈ {0, 1}, with 1 ≤ i ≤ L andsign(a) = 1, if

a ≥ 0 and0, otherwise. The vectorbx ∈ {0, 1}L computed
for all projections represents abinary templateof the vector
x. Since all projections are independent, it can be assumed
that all bits inbx will be independent and equiprobable.

Obviously, the template computed from some distorted
versiony of x denoted asby might contain some bits dif-
ferent from those inbx. Therefore, the link between the bi-
nary representationbx of vectorx and its noisy counterpart
by of vectory is defined according to the BSC with aver-
age probabilityP̄b. The bit error probability indicates the
mismatch of signs betweeñxi and ỹi according to (15), i.e.,
Pr[sign(x̃i) 6= sign(ỹi)]. For a givenx andwi, the proba-
bility of bit error is:

Pb|x̃i
=

1

2
(Pr[Ỹi ≥ 0|X̃i < 0] + Pr[Ỹi < 0|X̃i ≥ 0]), (16)

or by symmetry as:

Pb|x̃i
= Pr[Ỹi < 0|X̃i ≥ 0]. (17)

For a givenx̃i and Gaussian noise1, the distribution of the
projected vector is̃Yi ∼ N (x̃i, σ

2
ZwT

i wi) that reduces to
Ỹi ∼ N (x̃i, σ

2
Z) for the orthoprojector (wT

i wi = 1) and:

Pb|x̃i
=

∫ 0

−∞

1
√

2πσ2
Z

e
−(ỹi−x̃i)

2

2σ2
Z dỹi = Q

(

x̃i

σZ

)

. (18)

The origin ofPb|x̃i
can be explained considering the mutual

configuration ofx andwi (Fig. 2). The vectorx forms the an-
gle θXWi

with the basis vectorwi and the projection results
into the scalar valuẽxi. The closer angleθXWi

is to π/2,
the smaller valuẽxi. This leads to a larger probability that
the sign ofỹi will be different from the sign of̃xi. One can
immediately note that since the projections are generated at
random there is generally no guaranty that two vectors can be
collinear. However, at the same time some of the projections
might form angles withx that deviate fromπ/2 thus leading
to smaller bit error probability. This observation makes itpos-
sible to assume that some projections can be more preferable
than others and the equation (18) can be a good measure of
bit reliability or significance.

The above analysis only refers to a single realization ofx.
SinceX is a random vector following some distributionp(x),

1In the case of assumed Gaussian random basis vectorswi any distribu-
tion will be mapped into Gaussian one for both entry and noisy data.

one should find the average probability of error for all possi-
ble realizations. AssumingX ∼ N (0, σ2

XIN ), the statistics
of data in the projection domain arẽXi ∼ N (0, σ2

X) and:

P̄b = 2

∫ ∞

0

Pb|x̃i
p(x̃i)dx̃i (19)

= 2

∫ ∞

0

Q

(

x̃i

σZr

)

1
√

2πσ2
X

e
−x̃2

i

2σ2
X dx̃i =

1

π
arccos(ρXY ).

(20)

It should be noticed that all possible valuesx̃i in (19)
originating from both “unreliable”, i.e., values close to zero,
and “reliable”, i.e., values far away from zero, projections are
taken into account with the same weight to form the resulting
binary vectorbx. Obviously, for a given set of enrollment
data one can always find a set of vectorswi, 1 ≤ i ≤ L
minimizing the overall bit error probability like in the case
of the Fisher transform. However, keeping in mind the facts
that the number of classes might be in the order of millions
and constantly updated such an optimization problem looks
highly unfeasible. Therefore, in the scope of this paper we
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Fig. 2. The bit error probability for a givenx and somewi.

will consider another approach when one generates theover-
complete set of random projectionsJ and select among them
only thoseL projections that are the largest in the absolute
magnitude, if a fixed number of template bits is requested, or
those that are higher then a certain thresholdTx̃ for a givenx
like in [8]. We will form a vectorPx ∈ {0, 1}J containing
the positions of significant components marked with1s. In
case of the above thresholding approach, the corresponding
average probability of bit error is:

P̄bT
=

1
∫ ∞

T x̃
p(x̃i)dx̃i

∫ ∞

Tx̃

Pb|x̃i
p(x̃i)dx̃i (21)

= Q−1

(

T x̃

σX

)
∫ ∞

T x̃

Q

(

x̃i

σZr

)

1
√

2πσ2
X

e
−x̃2

i

2σ2
X dx̃i, (22)

where the multiplier is the normalization constant corre-
sponding to the fraction of distribution behind the threshold.

It is easy to verify that the number of coefficientsL of
random variableX̃i following Gaussian distribution and ex-
ceeding the thresholdTx̃ in J projections satisfies with high
probability the following equation:

Pr[L ≥ ℓ] = 1 − FBX
(J, ℓ,Pr[X̃i > Tx̃]), (23)



whereℓ is the necessary number of reliable coefficients (like
32, 64 or 128),FBX

(J, ℓ,Pr[X̃i > Tx̃]) designates bino-
mial cumulative distribution function andPr[X̃i > Tx̃] =

Q
(

Tx̃

σX

)

. In the case of selection ofL largest components

out ofJ , we will only assume thatJ is sufficiently large with
respect toL to ensure the desirable bit error probabilityP̄ ′

b.

2.2. Helper data communication: generalized protocol

The considered extraction ofL significant components is used
in the generalized authentication protocol shown in Fig. 32 .
The proposed protocol contains two types of helper dataM1

andM2. The helper dataM1 is dedicated to the communi-
cation of side information about the significant components
Px. The helper dataM2 serves for the errorless key recovery
at the decoder based onBy.

Depending on the rate of helper dataM1, one can design
different coding strategies for the desired key rate-privacy
trade-off: (a) no side information about the reliable com-
ponents, i.e.,H(Px) = 0 with the overall helper data pri-
vacy leak H2(P̄b) from M2; (b) the directly compressed
significant components index vectorPx with the entropy
H(Px) and reducedM2 leak H2(P̄

′
b); (c) the vectorPx

compressed in the distributed way usingPy as the noisy
side information with the entropyH(Px|Py) and the same
M2 leakH2(P̄

′
b). The first strategy corresponds to the direct

implementation of the Slepian-Wolf scheme considered in
Section 1 with the relatively high privacy leak viaM2. The
second strategy corresponds to the system considered in [8]
with the difference in the procedure of significant compo-
nents extraction described in the previous section. Moreover,
contrary to the considered random projections, the publicly
known basis vectors of the Fisher transformwj , 1 ≤ j ≤ J
enforced by the information about the significant compo-
nentsPxj

in [8] can leak up toI(X;W1Px1
, · · · ,WJPxJ

)=

I(X;W′
1, · · · ,W′

L) ≤
∑L

i=1 I(X;W′
i) bits aboutx, where

W′
i, 1 ≤ i ≤ L denote the basis vectors corresponding to the

significant components. This mutual information is nonzero
and this issue was not addressed in [8]. The third scheme
only revealsH(Px|Py) bits about the positions of signifi-
cant components contrarily to the previous one. Moreover,
we will show in the next section that privacy leak in part
of M2 can be close to zero for a certain operation regime.
It should be also pointed out that the use of described key-
dependent orthoprojectorW does not require any training
and reveal any information about the basis vectors contrarily
to the Fisher transform. Additionally, if the number of future
items/users is essentially larger than the cardinality of training
set, the performance of random orthoprojector asymptotically

2Since the mapping (14)-(15) does not generally guarantee thebit inde-
pendence, one can apply privacy amplification. The privacy amplification
can be accomplished in two different ways: (a) by applying diagonalization
transform to the datãX after (14) that closely follows Gaussian distribution
or (b) by applying universal hashing that ensures the extraction of uniform
binary templateBx

′ of lengthL′ from Bx with L > L′.

approaches those of Fisher transform in terms ofP̄ ′
b.
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Fig. 3. Authentication based on helper data.

3. RESULTS OF COMPUTER SIMULATION

In this section, we present the results of computer simula-
tion for the considered key rate-privacy leak formulation un-
der the Gaussian observation and binarized setup. The ob-
servation model is considered in terms of signal-to-noise ra-

tio (SNR) defined as SNR= 10 log10
σ2

X

σ2
Z

. All results are
obtained for 10000 noise realizations and 100 input vectors.
First, we show the impact of significant components extrac-
tion on P̄b according to the proposed overcomplete random
projections transform withJ = 1500 andL = 32 for N =
1024 length Gaussian input vectors versus the blind ransom
transform (19) (Fig. 4). To estimate the privacy leak due to
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Fig. 4. Average bit error probability for blind and significant
components based binarization based onPx.

the distributed coding of helper dataM1, we performed the
simulations shown in Fig. 5. Obviously, this leak depends on
the SNR and asymptotically converges to zero with the SNR
increase. The key rate increase due to the usage of significant
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components versus the blind random projection transform is
shown in Fig. 6. Finally, to investigate the privacy leak due

−30 −20 −10 0 10 20 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR, [dB]

S
ec

re
cy

 r
at

e 
R

s, [
bi

t/u
se

]

 

 

Blind
Reliabilty: R

x

Fig. 6. Key rateRs for blind and significant components
based binarization based onPx.

to the helper dataM2 in different protocols, we obtained the
results shown in Fig. 7. The privacy leak due to the significant
component selection based onPx is considerably reduced in
comparison to the blind scheme. Moreover, one can expect
even0-privacy leak for SNR higher 10 dB.

4. CONCLUSIONS

We considered the generalized key rate maximizing authenti-
cation setup with two types of helper data based on the sig-
nificant component positions and secure key encoding. The
different coding schemes are analyzed to minimize the pri-
vacy leak due to the helper data. In particular, we established
that one can achieve zero privacy leak in part of significant
components helper data by their direct extraction from the
noisy data. Moreover, the privacy leak in part of secret key
extraction can be significantly reduced thanks to the proposed
overcomplete random projection transform with the selection
of fixed length template vector.
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