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Abstract: We introduce a new interpretation for the biometric enrollment and identi-
fication paradigms and show how the problem of multiple hypothesis testing (HT) for
arbitrarily varying sources (AVS) in a special case relates to it. The traditional stud-
ies on biometric systems from communication perspectives assume the noisy channel
model. If suppose that the process of the biometric data enrollment for a person can
be performed several times and at each time both the person and the detector have
some arbitrary “state”, then those observations characterized according to their em-
pirical distributions can be treated as family distributions of an AVS. It means that
M persons enrollment indicate M different AVS’s. Then the problem of biometric
identification based on a new observation turns to be a detection of true AVS with an
additional option of rejecting the existing M hypotheses. In this context, the biometric
identification over noisy channels converts to one in an arbitrarily varying stochastic
environment. We consider the problem within a fundamental framework of HT and in-
formation theory. The asymptotic tradeoffs among error probability exponents associ-
ated with false acceptance of rejection decision and false rejection of true distribution
family are investigated and the optimal decision strategies are outlined. It is proved
that for an optimal discrimination of M hypothetical distribution families/persons the
ideal detector permits always lower error than in deciding in favor of the rejection.

1 Introduction

The scientific and technological interest in fundamental frameworks of biometric identifi-
cation/authentication systems design rapidly grows with security needs of modern society.
One of those fundamental frameworks from information-theoretic perspectives was dis-
closed by Willems el al. [5]. Its innovation is that the authors transfer a biometric identi-
fication problem to a communication problem over discrete memoryless channels (DMC)
and thus reveal the concept of identification capacity (in other words, theoretically achiev-
able maximum number of persons that can be reliably identified within a given system
defined by DMC’s). The latter is a fundamental limit and a performance target for any
such biometric identification system. At the same time, characterization of performance
bounds of identification systems in the setting of optimal hypothesis testing (HT) (see [7],
[8]) are also highly important both from practical and theoretical considerations. In this
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context, keeping the general information-theoretic framework, we propose an alternative
model of biometric identification (that naturally implies for the authentication) within the
multiple HT for information sources. Here, when we make the model transform against
the classical views, the discrete arbitrarily varying sources (AVS) play a central role.

The current analysis primarily relies on the paper [10] (see also the other references
therein) and on the classical works in HT by Blahut [1], Haroutunian [2], Fu and Shen
[4], as well as on the recent developments [6] and [9]. We briefly recall that, in particu-
lar, [1] characterizes the optimum relation between two kinds of error exponents in binary
HT for discrete memoryless sources (DMS). The papers [2] and [6] study the multiple
(M > 2) HT for DMS’s in terms of logarithmically asymptotically optimality (LAO) and
error exponents achievability, respectively. The subjects of [4] and [9] (also [10]) are the
binary and M -ary HT for AVS’s (a rather more practical model of source than the abstract
DMS), respectively.

According to this model it is assumed that the source enrollment or registration is con-
ditioned by a certain parameter further referred to as state. Under the state one can, for
instance, imagine geometrical orientation of the object during its registration. It is further
agreed that the state remains unchanged during entire registration. In such a scenario we
say that that we deal with an arbitrarily varying object, a special case of an AVS. Perfor-
mance analysis of optimal identification of such objects in terms of the best achievable
error exponents represents the main research challenge of this paper.

In Section 2 the proposed model and the relevant mathematical concepts are introduced.
Section 3 demonstrates the main result. Its further elaboration in view of optimal identifi-
cation or HT strategies is the topic of Section 4.

2 Models of biometric identification, information source, and HT

Following modern trends of multi-biometric identification, it is assumed that we are al-
lowed to acquire several samples from the same person (to enhance the accuracy of the
identification system benefiting from multiple observations) which can result in different
records. It means that at enrollment and identification the person stays at different “states”
s (from finite set S) during the registration and those states are arbitrary (coming, for in-
stance, from physical and other conditions of the enrollment device, human interaction
with it, etc.). For each person m among M possible, an N -length vector of observations

x
4
= (x1, ..., xN ) ∈ XN (X being the enrollment or information source alphabet, also

finite) or x(s) depending on a state has its own statistics of signals, or, in other words,

its own type/emprical distribution (ED) [3], denote it by Gm,s
4
= {Gm(x|s), x ∈ X}.

The latter is computed by an extractor of empirical distributions (Fig. 1). Moreover,
the enrollment state does not change during a particular sampling or feature extraction.

Those distributions collected for all possible states of the enroller create a family Gm
4
=

{Gm,s, s ∈ S} of probability distributions (PD) which is saved in a database. Therefore,
each of possible M persons can be characterized by his/her specific family of PD’s (over



arbitrarily varying states) which constitute an AVS. Within this model the biometric iden-
tification becomes a problem of multiple HT (making a decision on the true distribution
family or a person m̂ among M or on the rejection of all M ’s) based on an observation
made at an unknown state for an identifiable person (Fig. 2). Note that the genuine statis-
tical characteristics (type family) of an enrolled person remains unknown, denote it by G∗m
for person m. So in the phase of identification the identifier has to match the outcome of
the extractor of distributions for an observation (at unknown state) with the M hypotheses
available in the biometric database and make a decision in favor of one of them or the
rejection alternative:

Hm : G∗ = Gm, HR : none of Hm’s is true, m = 1,M .

As a typical HT problem this decision making can be performed applying a test ϕN as a
partition of XN intoM+1 disjoint subsetsAmN , m = 1,M , andARN . If x ∈ AmN then the
test adopts the hypothesis Hm. If x ∈ ARN , the test rejects all those M hypotheses. Below
we categorize the errors occurring in the decision making. (M + 1)M different kinds
of errors are possible. We treat the problem in the memoryless formulation. Therefore,

the probability of x according to PD G∗ is G∗N (x)
4
=
∏N
n=1G

∗(xn). Furthermore, the

probability of a subset AN ⊂ XN is measured by the sum G∗N (AN )
4
=

∑
x∈AN

G∗(x).

Person

Enroller, 

Enroller, 

Enroller, 

Extractor of 
Empirical 

Distributions 

DB of Family 
Distributions

m

1s

2s

||s

)( 1sx

)( ||sx

)( 2sx


Fig. 1. Enrollment of person m.
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Fig. 2. Identification of a person.

Now, the probability of an erroneous acceptance of hypothesis Hl when Hm was true is

αl,m(ϕN )
4
= max

s∈S
GNm,s(AlN ), 1 ≤ l 6= m ≤M. (1)



And the error probability of false rejection (a false accept of rejection decision) when Hm

was true is defined by

αR,m(ϕN )
4
= max

s∈S
GNm,s(ARN ), m = 1,M. (2)

In case of true Hm the probability of wrong decision (false reject of true hypothesis) will
be

αm(ϕN )
4
= max

s∈S
GNm,s(A

m

N ) = max
s∈S

 M∑
l 6=m

GNm,s(AlN ) +GNm,s(ARN )

 , m = 1,M.(3)

Therefore, the following sort of error probability exponents/reliabilities (log-s and exp-s
being to the base 2) of (1) and (2) are of interest:

El|m(ϕ)
4
= lim sup

N→∞
− 1

N
logαNl|m(ϕN ), l 6= m = 1,M, (4)

ER,m(ϕ)
4
= lim sup

N→∞
− 1

N
logαNR,m(ϕN ), m = 1,M, (5)

where ϕ
4
= {ϕN}∞N=1. From (3) and (4) it follows that

Em(ϕ) = min
l 6=m

[
El|m(ϕ), ER,m(ϕ)

]
. (6)

Now the question is: which collection (trade-offs) of error exponents can be theoretically
achieved for the given identification or HT problem? Consider the 2M -dimensional point

E
4
= {ER,m, Em}m=1,M with respect to the error exponent pairs (− 1

N logαR,m(ϕN ),

− 1
N logαm(ϕN )), where the decision regions AmN (m = 1,M ) and ARN satisfy AmN ∩
AlN = ∅ for m 6= l, AmN ∩ ARN = ∅ and

⋃
m
AmN = XN/ARN .

Definition 1 The collection of error exponents (reliabilities) E is called achievable if for
all ε > 0 there exists a decision scheme {AmN}Mm=1 plus ARN such that

− 1

N
logαR,m(ϕN ) > ER,m − ε, −

1

N
logαm(ϕN ) > Em − ε

for N large enough. LetRb(M) denotes the set of all achievable reliabilities.

3 Error exponents: achievable tradeoffs

The method of typical sequences [3] is underlying for proofs of achievable error bounds.

Let G(X ) 4= {G(x), x ∈ X} be the collection of all PD’s onX . Each observation x ∈ XN



has a type defined by its composition or empirical PD Gx(x)
4
= G

4
= 1

NN(x|x), where
N(x|x) is the number of occurrences of x in x. Denote the set of all possible types of such
N -length vectors by GN (X ). Additionally, denote by T NG (X) the type class of G, the
set of G-type vectors x. Let H(G) stands for the Shannon entropy of G and D(G ‖ Gm)
for the KL divergence between distributions G and Gm. In the sequel we use several
properties of types. First of all,

|GN (X )| < (N + 1)|X |, (7)

|T NG (X)| ≤ exp{NH(G)}. (8)

For a PD Gm,s ∈ G(X ), the sequence x ∈ T NG (X) has the probability

GNm,s(x) = exp{−N [H(G) +D(G ‖ Gm,s)]}. (9)

The equations (8) and (9) imply estimates for the probability of a type class:

GNm,s(T NG (X)) ≥ (N + 1)−|X| exp{−ND(G ‖ Gm,s)}, (10)

GNm,s(T NG (X)) ≤ exp{−ND(G ‖ Gm,s)}. (11)

In the theorem and its proof below we show that the following collection of exponents
characterizes the unknown regionRb(M):

Eb(M)
4
= {E : ∀G ∃m s. t. min

s∈S
D(G ‖ Gm,s) > Em and

∃G s. t. min
s∈S

D(G ‖ Gm,s)>ER,m for all m}. (12)

Theorem 1 The set Eb(M) is an achievable region of reliabilities: Eb(M) ⊂ Rb(M).
Additionally, if E ∈ Rb(M), then for any δ > 0 it follows that Eδ ∈ Eb(M), where

Eδ
4
= {ER,m − δ, Em − δ}m=1,M .

The proof of the theorem consists of direct and converse parts. For the direct part, we
observe that if E ∈ Eb(M), then from (8), (9), and (11) for any s ∈ S we have

GNm,s(A
m

N ) =
∑

x∈Am

N

GNm,s(x)

≤
∑

T N
G

(X)⊂Am

N

exp{−ND(G ‖ Gm,s)}

≤ |GN (X )|exp{−ND(G ‖ Gm,s)}. (13)

Applying (13) and (7) we derive

αm(ϕN ) ≤ |GN (X )|exp{−N min
s∈S

D(G ‖ Gm,s)} ≤ exp{−N(Em − δ)}.



Similar steps can lead us to other desirable inequalities:

αR,m(ϕN ) ≤ exp{−N(ER,m − δ)}. (14)

In the converse part we assume that E ∈ Rb(M). It means that for every ε > 0 there
exists a decision scheme {AmN ,ARN}Mm=1 that provides the following inequalities for all
m’s with large enough N > N0(ε):

− 1

N
logαR,m(ϕN ) > ER,m − ε, −

1

N
logαm(ϕN ) > Em − ε, (15)

We pick a δ > 0 and show that

∀G ∃m s. t.min
s∈S

D(G ‖ Gm,s) > Em − δ, (16)

∃G s. t.min
s∈S

D(G ‖ Gm,s) > ER,m − δ for all m. (17)

For the equation (16), by the continuity of D(· ‖ Gm,s) there exists a type Q ∈ GN (X )
that for N > N1(ε) and a fixed m satisfies

D(Q ‖ Gm,s) ≤ D(G ‖ Gm,s) + δ/2. (18)

Let Gm∗
4
= arg

[
max
m

min
s∈S

D(Q ‖ Gm,s)
]

, then in light of (8) we have

αm∗(ϕN ) ≥ G
N

m∗(A
m∗

N )

≥ G
N

m∗(A
m∗

N ∩ T NQ (X))

=
∑

Am∗
N ∩T N

Q
(X)

exp{−N [H(Q) +D(Q ‖ Gm∗)]}

≥ |Am
∗

N ∩ T NQ (X)| exp{−NH(Q)} exp{−ND(Q ‖ Gm∗)},

where Q is a type-appproximation of G defined by (18) for Gm∗ .

Note that for N > N2(δ),

|Am
∗

N ∩ T NQ (X)| exp{−NH(Q)} ≥ exp{−Nδ/4}. (19)

Whence, for N > max{N1(δ), N2(δ)} we conclude that

αm∗(ϕN ) ≥ exp{−N [D(Q ‖ Gm∗)− δ/4]} ≥ exp{−N [D(G ‖ Gm∗) + δ/4]}

which with (15) and ε = 3δ/4 gives Em∗ − δ < − 1
N logαm∗(ϕN ) < D(G ‖ Gm∗) for

N > max{N0(ε), N1(δ), N2(δ)}.



Now we proceed to the equation (17). Pick a δ > 0. If Eδ /∈ Eb(M) then for arbitrary G
there exists m satisfying D(G ‖ Gm) ≤ ER,m − δ. In view of (8), (18), and (19) we get

αR,m(ϕN ) ≥ G
N

m(ARN )

≥ G
N

m(ARN ∩ T NQ (X))

=
∑

AR
N
∩T N

Q
(X)

exp{−N [H(Q) +D(Q ‖ Gm)]}

≥ |ARN ∩ T NQ (X)| exp{−NH(Q)} exp{−ND(Q ‖ Gm)}
≥ exp{−N [D(G ‖ Gm)− δ/4]}
≥ exp{−N [ER,m − δ/4]}.

However, the last inequality contradicts to (15) for ε < δ/4 and N large enough.

4 Optimal decision schemes

Theorem 1 specifies all possible reliability trade-offs for the identification system of Figs.
1-2. It contains also optimal relations between those error exponents in sense of LAO
testing of hypotheses. In other words, let E∗m, m = 1,M, be fixed: what are the “maxi-
mum” values {E∗l,m, E∗R,m}l 6=m=1,M for the rest of reliabilities such that there is no other
collection {E′l,m, E′R,m}l 6=m=1,M satisfying E′l,m > E∗l,m and E′R,m > E∗R,m for all
l 6= m = 1,M?

Let ϕ∗ be a test sequence defined by the following decision regions:

BR
4
= {G : min

s∈S
D(G ‖ Gm,s) > E∗m for all m}, (20)

Bm
4
= {G : min

s∈S
D(G ‖ Gm,s) < E∗m}, m = 1,M. (21)

For l 6= m = 1,M we define:

ER,m(ϕ∗)
4
= E∗R,m

4
= min
G∈BR

min
s∈S

D(G ‖ Gm,s), (22)

El,m(ϕ∗)
4
= E∗l,m

4
= min
G∈Bl

min
s∈S

D(G ‖ Gm,s). (23)

A detailed analysis of this decision scheme results in the next assertion.

Theorem 2 Let the inequalities

E∗1 < min
m
{ min
s,s′∈S

D(Gm,s ‖ G1,s′)},



E∗m < min
l 6=m
{ min
l=1,m−1

E∗l,m, min
l=m+1,M

min
s,s′∈S

D(Gl,s ‖ Gm,s)}, m = 1,M,

hold, then the optimum collection of error exponents are defined by (20)–(23).

Theorem 2 implies an interesting observation.

Remark 1 Further analysis shows that min
l=1,M, l 6=m

[
E∗l,m, E

∗
R,m

]
= E∗R,m, for all m =

1,M . This statement means that discriminating among M families is always easier than
voting for the rejection. Its biometric reflection within the above introduced identification
model is that the persons can be recognized easier than claimed unfamiliar.

Conclusion. We introduced a novel mathematical interpretation and model for the biomet-
ric identification and showed its relation to the multiple HT for arbitrarily varying objects
within an information-theoretic framework. The achievable performance bounds for this
identification system are specified including special optimality tradeoffs.
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