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Abstract—Content identification based on digital fingerprinting
attracts a lot of attention in different emerging applications. In
this paper, we consider digital identification based on the sign-
magnitude decomposition of fingerprint codewords and analyze
the achievable rates for each component. We introduce a channel
splitting approach and reveal certain interesting phenomena
related to channel polarization. It is demonstrated that under cer-
tain conditions almost all rate in the sign channel is concentrated
in reliable components, this can be of interest for complexity
and security in various content identification applications. The
envisioned extensions cover applications where the input and
output alphabets of the channel are different at the encoding
and decoding stages. Additionally, the reduction of the input data
dimensionality at the encoding/enrollment stage can increase the
cryptographic protection in terms of privacy leakage and simplify
the decoding algorithms in biometric applications.

I. I NTRODUCTION

Identification systems are widely used in various emerging
applications ranging from identification of physical objects and
people to multimedia management (content filtering, content
tagging) and security (copyright protection, broadcast monitor-
ing, etc.). Most identification techniques are based on digital
fingerprints, which represent a short, robust and distinctive
content description. In this case, all operations are performed
on the fingerprint instead of on the original large and privacy-
sensitive data, thus allowing the introduction of crypto-based
security into the analog and noisy world [1].

From coding perspectives, the identification problem can
be considered as a form of communication with random
codewords [2], which can be further implemented based
on bounded distance decoding [3]. In contrast to the high
attractiveness of binary data representations for memory stor-
age, complexity, security and privacy, an important fraction
of information is neglected once the data are binarized. It
is demonstrated that soft information extracted from noisy
observations can enhance the overall system performance,
complexity and privacy [3].

In this paper, we extend this consideration to a general
decomposition of real signals into sign and magnitude compo-
nents in a random projection domain. Then, we investigate the
basic decomposition of mutual information between channel
input and output into four terms, where two terms are domi-
nating with one degree of freedom for each channel, and two
mixed channels that cover the exchange of information across
the channels. Such a decomposition makes it possible to use

multistage decoding for random codewords as well as to reveal
some interesting phenomena linking this consideration with
rate concentration or channel polarization, where all rates can
be concentrated in several components. The results are applied
to Gaussian random data and an additive white Gaussian
noise (AWGN) channel in the projected domain after random
projections with a random sensing matrix. This decomposition
might reveal some interesting insights into the analysis and
design of future identification systems.

Notations. We use capital letters to denote scalar random
variables X, bold capital letters to denote vector random
variablesX, corresponding small lettersx andx to denote the
realizations of scalar and vector random variables, respectively,
i.e., x = {x(1), x(2), ..., x(N)}. xS is used to denote the
sign of x andxM the magnitude ofx. We useX ∼ f(x) to
indicate that a continuous random variableX follows fX(x)
and X ∼ p(x) to characterize discrete random variables.
h(·), H(·) and H2(·) denote differential entropy, entropy
and binary entropy, respectively, whileI(·) defines pair-wise
mutual information.

II. A SIGN-MAGNITUDE DECOMPOSITION OF MUTUAL

INFORMATION

A. General decomposition

Consider a memoryless sourceX with some symmet-
ric distribution and a discrete memoryless channel (DMC)
f(y|x) =

∏N
i=1 f(yi|xi) with input xi = xSi ·xMi and output

yi = ySi · yMi, wherexSi = sign(xi) andySi = sign(yi) are
the sign components andxMi = |xi| and yMi = |yi| are
the magnitudes,xS ∈ XS , yS ∈ YS (XS ,YS = {−1,+1});
xM ∈ XM , yM ∈ YM (XM ,YM = R

+).

Proposition 1 (sign-magnitude decomposition).The mutual
information between channel input and output can be decom-
posed as shown in Fig. 1 and yields:

I(X;Y )= I(XS ,XM ;YS , YM )
(a)
= I(XM ;YM ) + I(XS ;YS |XM )
(b)
= I(XM ;YM ) + I(XS ;YS |YM )

+H(YS |XS , YM ) − H(YS |XS ,XM )
︸ ︷︷ ︸

(c)

. (1)

Proof: The expansion (a) in (1) follows from the chain
rule for mutual information [4] that yields:



I(XS ,XM ;YS , YM )

= I(XM ;YS , YM ) + I(XS ;YS , YM |XM )

= I(XM ;YM )
︸ ︷︷ ︸

magnitude term,RM

+ I(XS ;YS |XM )
︸ ︷︷ ︸

sign term, conditioned onXM , RS|xM

+ I(XM ;YS |YM )
︸ ︷︷ ︸

〈cross-term 1〉 = 0

+ I(XS ;YM |XM , YS)
︸ ︷︷ ︸

〈cross-term 2〉 = 0

.

(2)
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Fig. 1. General sign-magnitude decomposition of DMCf(y|x) into sign
p(yS |xS , xM ) and magnitudef(yM |xM ) channels.

In the last decomposition of (2), the first term corresponds
to the mutual information between the magnitude components
communicated via the channelf(yM |xM ). The second term
represents the mutual information between the sign com-
ponents communicated through the state dependent binary
symmetrical channel (BSC)p(yS |xS , xM ), whose state is
defined by the magnitude componentxM :

I(XS ;YS |XM )=

∫

XM

I(XS ;YS |xM )f(xM )dxM

=Ef(xM )[I(XS ;YS |xM )], (3)

where Ef(xM )[·] denotes the expectation with respect to
the random variableXM ∼ f(xM ). To proceed with
the analysis of the cross-terms, it should be noted that
the sign and magnitude components of input and output
are independent, i.e.,XS⊥XM and YS⊥YM . Then, due to
the independence of these components the cross-term 1:
I(XM ;YS |YM ) = H(YS |YM ) − H(YS |XM , YM ) = 0. For
the cross-term 2:I(XS ;YM |XM , YS) = H(XS |XM , YS) −
H(XS |XM , YS , YM ) = H(XS |XM , YS)−H(XS |XM , YS) =
0.

The expansion (b) in (1) follows from the chain rule
decomposition:

I(XS ,XM ;YS , YM )

= I(XS ,XM ;YM ) + I(XS ,XM ;YS |YM )

= I(XM ;YM )
︸ ︷︷ ︸

magnitude term,RM

+ I(XS ;YS |YM )
︸ ︷︷ ︸

sign term, conditioned onYM , RS|yM

+ I(XS ;YM |XM )
︸ ︷︷ ︸

〈cross-term 1〉 = 0

+ I(XM ;YS |XS , YM )
︸ ︷︷ ︸

〈cross-term 2〉

.

(4)

The magnitude term coincides with one in (2), while the sign
term is conditioned byyM , i.e., degraded version ofxM that
causes a rate lossRS|yM

≤ RS|xM
. This rate loss becomes

more evident from the analysis of cross-term 2:

I(XM ;YS |XS , YM )=H(YS |XS , YM ) − H(YS |XS ,XM , YM )

=H(YS |XS , YM ) − H(YS |XS ,XM ). (5)

Finally, I(XS ;YM |XM ) = H(XS |XM )−H(XS |XM , YM ) =
0.

Remark1. Under the proper knowledge of BSC statexM , the
mutual informationI(X;Y ) can be decomposed and achieved
by independent processing of the magnitude and sign channels.
Alternatively, one can apply multistage decoding (MSD) by
first decoding the magnitudexM and then the sign. If for
some technical or security reasonsxM is unavailable and the
channel statexM is approximated byyM , one observes a rate
loss proportional to the entropy of the mismatch between the
exact channel state and its approximation.

Remark 2. The decomposition (1) can be very helpful to
understand “soft” fingerprinting schemes, where only binary
information is stored, but soft information about bit reliabilities
is extracted from the noisy magnitudes [3].

In some applications such as biometrics and content identifi-
cation, where the identification is based on random codebooks,
the mutual information between channel input and output
defines the identification capacityCid = I(X;Y ) [2]. The
difference with the design of data transmission codebook
consists in the absence of the maximization with respect to
the input distributionf(x). In the following Sections we will
consider the sign-magnitude decomposition of mutual infor-
mation I(X;Y ) and analyze some interesting dependencies
for Gaussian inputX and AWGN channel.

B. Decomposition of AWGN identification channel
In this section we apply decomposition (1) to the Gaussian

input X and AWGN channel. Besides the great importance of
the Gaussian case, it can be demonstrated that any i.i.d. pdf
f(x) or correlated signals following a Gauss-Markov model
of the first order can be transformed into an approximately
i.i.d. Gaussian signal of lower dimensionality using random
projections [5]. Therefore, under these conditions we assume
that X ∼ N (0, σ2

X) andY = X + Z, whereZ ∼ N (0, σ2
Z) .

1) Magnitude term:The first term of both decompositions
(2) and (4) isRM = I(XM ;YM ) = h(YM )−h(YM |XM ). The
differential entropyh(YM ) = 1/2 log2(1/2πe(σ2

X + σ2
Z)) =

1/2 log2(2πe(σ2
X + σ2

Z)) − 1 corresponds to the entropy of
the half-normal distribution, where “−1” reflects the absence
of the sign information. The conditional term can be rewritten
as:

h(YM |XM ) = h(Z) − H(YS |XS ,XM ) (6)

that follows from the decomposition:

h(Z) = h(Y |X)=h(YS , YM |XS ,XM )

=h(YM |XS ,XM ) + H(YS |XS ,XM , YM )

=h(YM |XM ) + H(YS |XS ,XM ) (7)

with differential entropyh(Z) = 1/2 log2(2πeσ2
Z). The term

H(YS |XS ,XM ) corresponds to the entropy of the event
related to the mismatch of the signs ofYS and XS under
XM that can be developed as:

H(YS |XS ,XM )=

∫

XM

H(YS |XS , xM )f(xM )dxM

=Ef(xM )[H(YS |XS , xM )]

=Ef(xM )[H2(Pr[YS 6= XS |xM ])]

=Ef(xM )[H2(Pb|xM
)], (8)



wheref(xM ) = 2√
2πσ2

X

exp[− x2
M

2σ2
X

] and

Pb|xM
=Pr[YS 6= XS |xM ]

=Pr[YS = −1|XS = +1, xM ]Pr[XS = +1]

+Pr[YS = +1|XS = −1, xM ]Pr[XS = −1]

=Pr[YS = −1|XS = +1, xM ]

=

∫ 0

−∞

p(y|xM )dy

=

∫ 0

−∞

1
√

2πσ2
Z

exp

[

− (y − xM )2

2σ2
Z

]

dy

=Q

(
xM

σZ

)

. (9)

Substituting (9) into (8) yields:

H(YS |XS ,XM ) =

∫

XM

H2

[

Q

(
xM

σZ

)]

f(xM )dxM . (10)

Alternatively, one can find the conditional entropy (6) as:
h(YM |XM )

= −
∫

XM

∫

YM
f (yM , xM ) log2 (f (yM |xM )) dyMdxM ,

(11)
where the conditional pdf f(yM |xM ) =

1√
2πσ2

Z

exp
[

− (−yM−xM )2

2σ2
Z

]

+ 1√
2πσ2

Z

exp
[

− (yM−xM )2

2σ2
Z

]

is characterized by folded normal distribution.

Remark 3. The conditional entropyh(YM |XM ) converges
to the entropy ofh(Z) for the regime of small degrada-
tions, when the termH(YS |XS ,XM ) tends to zero in (6).
For high degradations, the termH(YS |XS ,XM ) tends to 1
and h(YM |XM ) converges to the entropy of channel noise
magnitudeh(ZM ) = h(Z) − 1. Denoting the signal-to-noise
ratio as SNR = 10 log10

σ2
X

σ2
Z

, we present the behavior of
h(YM |XM ), h(Z), and h(ZM ) in Fig. 2. The conditional
entropyh(YM |XM ) was computed according to (6) and (11)
by numerical integration.
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Fig. 2. Behavior of conditional entropyh(YM |XM ) with respect toh(Z)
andh(ZM ).

2) Sign term: In the decomposition (1), there are two sign
terms conditioned onXM and YM . The sign term in the
decomposition (1(a)) is:

I(XS ;YS |XM )=H(YS |XM ) − H(YS |XS ,XM )

=H(YS) − H(YS |XS ,XM ). (12)

The entropyH(YS) = 1 due to the symmetry of the Gaussian
pdf of Y ; the second term is given by (10). Thus, (12) yields:

RS|xM
=I(XS ;YS |XM )

=1 −
∫

XM

H2

[

Q

(
xM

σZ

)]

f(xM )dxM . (13)

The sign term in the decomposition (1(b)) is:

I(XS ;YS |YM )=H(YS |YM ) − H(YS |XS , YM )

=1 − H(YS |XS , YM ). (14)

The termH(YS |XS , YM ) corresponds to the mismatch of the
signs between input and output underYM and similar to (8)
can be rewritten as:

H(YS |XS , YM )=Ef(yM )[H(YS |XS , yM )]

=Ef(yM )[H2(Pr[YS 6= XS |yM ])]

=Ef(yM )[H2(Pb|yM
)], (15)

where

Pb|yM
=Pr[YS 6= XS |yM ]

(a)
=Ef(xM |yM )[Pr[YS 6= XS |xM ]]

(b)
=Ef(xM |yM )

[

Q

(
xM

σZ

)]

=

∫

XM

Q

(
xM

σZ

)

f(xM |yM )dxM , (16)

where the conditional pdf f(xM |yM ) =

1
√

2πσ2
X|Y

exp

[

− (−xM−ρyM )2

2σ2
X|Y

]

+

1
√

2πσ2
X|Y

exp

[

− (xM−ρyM )2

2σ2
X|Y

]

is represented by a folded

normal distribution with ρ = σ2
X/(σ2

X + σ2
Z) and

σ2
X|Y = σ2

Xσ2
Z/(σ2

X +σ2
Z) and (a) corresponds to the MMSE

estimation ofX for a givenY : x̂ = E[XY ]/E[X] = ρy; (b)
follow from (9). Substituting (16) into (15) yields:

RS|yM
= 1 − H(YS |XS , YM ) =

1 −
∫

YM
H2

[∫

XM
Q

(
xM

σZ

)

f(xM |yM )dxM

]

f(yM )dyM .

(17)

Remark4. In the case of no channel state information (CSI)
about the statexM of channelp(yS |xS , xM ), the rate is:

RS|⊘ = I(XS ;YS |⊘) = 1 − H2(Pb), (18)

wherePb = Ef(xM )[Pb|xM
] corresponds to the average prob-

ability of bit error.

This situation corresponds to identification based on hard
fingerprints, where only the sign information is used for
decoding. We present the resulting ratesRM andRS|xM

with
respect to the capacity of the AWGN channel denoted as
Cid = 1

2 log2

(

1 +
σ2

X

σ2
Z

)

in Fig.3a andRS|xM
, RS|yM

and
RS|⊘ in Fig.3b.
Remark5 (Sign-magnitude decomposition of the mutual infor-
mation for AWGN).The decomposition ofCid for the AWGN
channel results into the ratesRM and RS|xM

that in sum
coincide with the capacity of the AWGN channel. At high
SNR, the achievable rateRS|xM

converges to 1 bit/channel
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Fig. 3. The rates for sign-magnitude decomposition: (a) achievability of
AWGN capacity by sum of the rates for magnitudeRM and signRS|xM

channels; (b) achievable rates under perfectxM , partial side information based
on yM and zero side information about the channelp(yS |xS , xM ).

use that exactly corresponds to the difference betweenCid and
RM .

Remark6. The impact of side information about the BSC state
xM :

• the presence of perfect side information about the BSC
statexM enhances the rate with respect to the degraded
versionyM at low SNR, whereyM is less reliable;

• the rateRS|yM
approaches rateRS|xM

at highSNR that
indicates that the decoding in the sign channel can be
performed independently from the magnitude channel;

• blind decoding without any information aboutxM , often
used in digital fingerprinting, represents about 0.15 bit
loss with respect toRS|xM

(SNR ≈ 10dB).

III. C HANNEL SPLITTING AND POLARIZATION

In this Section we introduce a practical model that achieves
the above theoretical limits based onchannel splitting.
Along this way, we will demonstrate the effect of rate
concentration in a few coefficients that we will refer to as
channel polarization. The channel splitting and polarization
will be demonstrated for the sign channel.

The channel splitting model assumes that the channel in-
put vector xS can be transmitted via several BSCs with
parameters defined by the state vectorxM according to the
model p(yS |xS , xM ). In the most simple case of 2-channel
splitting, two BSCs are considered. The channel splitting is
accomplished based on the available side informationxM or
yM and can be implemented by thresholding of the magni-
tude coefficients with a thresholdT . Equivalently, the same
proportion of coefficients can be chosen based on sorting of
the N magnitude coefficients ofxM or yM and selecting
the L largest ones. TheL bits related to the large magnitude
coefficients are considered as those belonging to thestrong
BSC with the cross-over probabilityPS

b and the remaining to
the weak one characterized byPW

b .

Remark7. The crossover probabilities for strong and weak
channels based on the perfect CSI (givenxM ) are:

PS
b|xM

=
1

PrS

∫ +∞

Tx

Pb|xM
f(xM )dxM , (19)

PW
b|xM

=
1

PrW

∫ Tx

0

Pb|xM
f(xM )dxM , (20)

wherePrS =
∫ +∞

Tx
f(xM )dxM and PrW =

∫ Tx

0
f(xM )dxM

correspond to probabilities of observing the strong and weak
channels, respectively. The corresponding identificationrates
are:

RS
S|xM

= PrS
[

1 − H2

(

PS
b|xM

)]

, (21)

RW
S|xM

= PrW
[

1 − H2

(

PW
b|xM

)]

, (22)

and the total rate is:

R2Ch
S|xM

= RS
S|xM

+ RW
S|xM

. (23)

Remark8. The crossover probabilities for strong and weak
channels based on the degraded CSI (givenyM ) are:

PS
b|yM

=
1

PrS

∫ +∞

Ty

Pb|yM
f(yM )dyM , (24)

PW
b|yM

=
1

PrW

∫ Ty

0

Pb|yM
f(yM )dyM , (25)

whereTy is selected to satisfy abovePrS =
∫ +∞

Ty
f(yM )dyM

andPrW =
∫ Ty

0
f(yM )dyM . The corresponding identification

rates are:

RS
S|yM

= PrS
[

1 − H2

(

PS
b|yM

)]

, (26)

RW
S|yM

= PrW
[

1 − H2

(

PW
b|yM

)]

, (27)

and the total rate yields:

R2Ch
S|yM

= RS
S|yM

+ RW
S|yM

. (28)

Remark9. The total crossover probabilityPb remains the same
as for the case of no CSI:

Pb =

∫

XM

Pb|xM
f(xM )dxM = PrSPS

b|xM
+ PrW PW

b|xM
.

(29)

The channel splitting by the selection of the thresholdT
can be performed according to the several strategies:

• Strategy 1: maximize the total ratesR2Ch
S|xM

or R2Ch
S|yM

to approach upper theoretical limitsRS|xM
or RS|yM

,
respectively, that gives optimal values of thresholdsTxopt

andTyopt
for eachSNR;

• Strategy 2: minimize probabilitiesPS
b|xM

or PS
b|yM

for
complexity reasons and privacy amplification [3].

According to strategy 1, the binary channel splitting ap-
proaches theoretical performance limits under the optimal
threshold selection as shown in Fig. 4a. The remaining
gap is easily compensated by more accurate models using
more channels in splitting. In fact, two-channel splittingcan
be considered as the first level decomposition ofxM =
(xM1

, xM2
, ..., xMk

) according to the multilevel coding frame-
work [6]. The optimal thresholdsTxopt

and Tyopt
are shown

in Fig. 4b. To exemplify strategy 2 we show in Fig. 5a the
pairs of crossover probabilities for strong and weak channels
under perfect and degraded CSI that resulted from the strategy
1. Fig. 5b shows the same pairs for the fixed thresholds
Tx and Ty, where one can clearly observe the significant
reduction ofPS

b|xM
or PS

b|yM
that asymptotically goes to zero

for SNR > 15 dB.
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Fig. 4. Approaching theoretical rates based on 2-channel splitting model
for the optimal threshold selection: (a) achievable identification rates under
different CSIs; (b) optimal thresholds for perfect and degraded CSI.
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Fig. 5. Probabilities of bit errors: (a) forTxopt andTyopt ; (b) for Tx = 1
and correspondingTy.

Remark10 (Channel polarization).An interesting phenome-
non is observed forTxopt

andTyopt
, when practically all rate

is concentrated in the strong channel, i.e.,RS|xM
≈ RS

S|xM

andRS|yM
≈ RS

S|yM
after a certainSNR. It means that weak

channels can be disregarded from the consideration. Moreover,
the positions of the bits belonging to the strong channels
can be reliably estimated. We will refer to the effect of rate
concentration in strong channels aschannel polarization.

The difference to polar codes, where the relationship bet-
ween bits are created in such a way that conditional entropy is
polarized to either 0 or 1, i.e., “weak” or “strong” bits, should
be also noticed. This property has a considerable impact on the
complexity. In our case, when the codewords are random, the
effect of polarization can be achieved by selectingT > Topt

(Fig. 5,b), when the cross-over probability in strong channel
is asymptotically equal to 0. Thus, those bits can be directly
considered for identification without decoding. However, an
unavoidable price for this option is rate loss in the strong
channel. Multichannel splitting with multistage decodingcan
partially resolve this rate-complexity trade-off, that isout of
the scope of this paper. The polarization effect is demonstrated
in Fig. 6 as the dependence of achievable rates and crossover
probabilities on the thresholdT for SNR = 20 and30dB.

The described phenomena can be of interest for:

• design of new search algorithms, when the representation
of original content is reduced to the vector of signs of
lengthN , and the decoder searches for the match of theL
most reliable components determined based on the noisy
observations;

• joint multistage search in the random Gaussian code-
books, where the search is performed over the magnitude
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Fig. 6. Achievable rates and crossover probabilities for channel splitting at
SNR = 20dB (a,b) andSNR = 30dB (c,d).

and signs codebooks;
• security and privacy amplification of biometrics and

privacy-preserving content identification as the extension
to [3].

IV. CONCLUSION

In this paper, we consider sign-magnitude decomposition of
mutual information for identification applications. We consider
the sign channel and demonstrate the effect of rate concentra-
tion under proper channel splitting parameters. This toy model
can be of interest for the design of soft multistage decoding
algorithms that can trade-off performance and complexity.
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