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Abstract—Content identification based on digital fingerprinting  multistage decoding for random codewords as well as to tevea
attracts a lot of attention in different emerging applications. In - some interesting phenomena linking this consideratiorh wit
this paper, we consider digital identification based on the sign- rate concentration or channel polarization, where allsratn
magnitude decomposition of fingerprint codewords and analyze . : .
the achievable rates for each component. We introduce a channel be Concentrated in several components. The resu!ts amedpp_l
splitting approach and reveal certain interesting phenomena 0 Gaussian random data and an additive white Gaussian
related to channel polarization. It is demonstrated that under cee  noise (AWGN) channel in the projected domain after random
tain conditions almost all rate in the sign channel is concentrated projections with a random sensing matrix. This decompmsiti

in reliable components, this can be of interest for complexity mignt reveal some interesting insights into the analysid an
and security in various content identification applications. The design of future identification systems

envisioned extensions cover applications where the input and ; )
output alphabets of the channel are different at the encoding ~ Notations. We use capital letters to denote scalar random

and decoding stages. Additionally, the reduction of the input data variables X, bold capital letters to denote vector random
dimensionality at the encoding/enroliment stage can increase the variablesX, corresponding small lettersandx to denote the
cryptographic protection in terms of privacy leakage and simplify  reajizations of scalar and vector random variables, reisg
the decoding algorithms in biometric applications. e, x = {e(1),2(2),...2(N)}. zs is used to denote the
l. INTRODUCTION sign of z and 2, the magnitude ofr. We useX ~ f(x) to
Identification systems are widely used in various emergirigdicate that a continuous random variatfefollows fx (z)
applications ranging from identification of physical oligeand and X ~ p(x) to characterize discrete random variables.
people to multimedia management (content filtering, canteh(-), H(-) and H»(-) denote differential entropy, entropy
tagging) and security (copyright protection, broadcastiieo- and binary entropy, respectively, whilé-) defines pair-wise
ing, etc.). Most identification techniques are based ontaligi mutual information.
fingerprints, vyhi_ch reprefsent a short, robl_Jst and distiacti II. A SIGN-MAGNITUDE DECOMPOSITION OF MUTUAL
content.descnptm_n. In this case, all qp_eranons are peiéd INFORMATION
on th.e_ fingerprint instead pf on th_e ongma! large and PWacC A  General decomposition
sensitive data, thus allowing the introduction of crypaséd
security into the analog and noisy world [1]. T
. . . e . dist|
From coding perspectives, the identification problem cdff N -
be considered as a form of communication with randorl¥ ) = IliZs f(yilas) with inputz; = ;- and output
codewords [2], which can be further implemented baséd = Ysi " YMi wherezg; = sign(z;) andyg; = sign(y;) are
on bounded distance decoding [3]. In contrast to the hiéﬂe sign components andy; = |zi| and ya; = |yi| are
attractiveness of binary data representations for mentory s "¢ magnitudesgs € Xs, ys € Vs +(X5’y5 = {-1,+1});
age, complexity, security and privacy, an important fiacti ¥M © X ymr € Y (Xnr, Yar = RT).
of information is neglected once the data are binarized. Rfoposition 1 (sign-magnitude decomposition) The mutual
is demonstrated that soft information extracted from noidgformation between channel input and output can be decom-
observations can enhance the overall system performargesed as shown in Fig. 1 and yields:
complexity and privacy [3]. I(X;Y)=1(Xs,Xn;Ys, Yar)
In this paper, we extend this consideration to a general ()
decomposition of real signals into sign and magnitude cempo =1(Xar; Yar) + 1(Xs3 Y5 | Xr)

Consider a memoryless sourd€ with some symmet-
ribution and a discrete memoryless channel (DMC)

nents in a random projection domain. Then, we investigate th (:b)I(XM§ Yar) +1(Xs; Ys|Yar)

pasm decomposn.lon of mutual information between channgl FH(Ys|Xs, Yar) — H(Ys|Xs, Xar) . (U)
input and output into four terms, where two terms are domi-

nating with one degree of freedom for each channel, and two (¢)

mixed channels that cover the exchange of information acros Proof: The expansion (a) in (1) follows from the chain
the channels. Such a decomposition makes it possible to wgke for mutual information [4] that yields:



I(XS)XM;YS7YM)
= I( X3 Ys, Yar) + 1(Xs; Ys, Yar | Xar)
—_———— —_———

magnitude termR ar sign term, conditioned oX »s, RS\wM

+I( X Ys|Yr) +I(Xs; Yor| X, Ys) -

Remarkl. Under the proper knowledge of BSC statg, the
mutual information/(X;Y") can be decomposed and achieved
by independent processing of the magnitude and sign channel
Alternatively, one can apply multistage decoding (MSD) by
first decoding the magnitude,; and then the sign. If for
some technical or security reasang is unavailable and the
channel state:,, is approximated by, one observes a rate
loss proportional to the entropy of the mismatch between the
exact channel state and its approximation.

Remark2. The decomposition (1) can be very helpful to
understand “soft” fingerprinting schemes, where only hinar
information is stored, but soft information about bit réligies

is extracted from the noisy magnitudes [3].

In some applications such as biometrics and content identifi
cation, where the identification is based on random codehook

-~ ] the mutual information between channel input and output
In the last decomposition of (2), the first term correspong&sfines the identification capacity,, = I(X;Y) [2]. The

to the mutual information between the magnitude componeRfgerence with the design of data transmission codebook
communicated via the channglyx[xar). The second term ¢qngists in the absence of the maximization with respect to
represents the mutual information between the sign o input distributionf (). In the following Sections we will
ponents communicated through the state dependent bingfysider the sign-magnitude decomposition of mutual infor
symmetrical channel (BSC)(ys|zs, =), whose state is mation 7(X;Y) and analyze some interesting dependencies
defined by the magnitude componeni: for Gaussian inpufX and AWGN channel.
I(Xs;Ys|XM)=/ I(Xs;Ys|oar) f(xar)doay B. Decomposition of AWGN identification channel
X In this section we apply decomposition (1) to the Gaussian

=E (20 [ (Xs: Yslzm)l, (3) input X and AWGN channel. Besides the great importance of
where E;,,] denotes the expectation with respect tfhe Gaussian case, _|t can be de_monstrated that any i.i.d. pdf
the random variableXy; ~ f(zar). To proceed with flx) or_correlated signals following a Gauss-Markov _model
the analysis of the cross-terms, it should be noted tHd the first order can be transformed into an approximately
the sign and magnitude components of input and outddtd; G_aussmn signal of lower dlmensmnahty_ using ramdo
are independent, i.eXs | Xy, and Ys 1 Ya,. Then, due to projections [5]. '2I'herefore, under these conditions We2rassu
the independence of these components the cross-termMBtX ~N(0,0%) andY = X + 7, whereZ ~ N(0,07%) .

)

(cross-term 1 =0

(cross-term 2=10

Fig. 1. General sign-magnitude decomposition of DMy|z) into sign
p(ys|zs, ) and magnitudef (yas|zas) channels.

. _ _ 1) Magnitude term:The first term of both decompositions
I(Xa; Ys|Yar) = H(Ys|Yy) — H(Ys| X, Yar) = 0. For _
(Ko Ys|Yr) (Vs|¥ar) = H(¥sXar, Yar) (2) and (4) isRy = I(Xar; Yar) = h(Yar)—h(Yas| Xar). The
differential entropyh(Yas) = 1/2log,(1/2me(c% + %)) =
1/2log,(2me(c% + 0%)) — 1 corresponds to the entropy of

the cross-term 27(Xg; Y| X, Ys) = H(Xs| X, Ys) —
H(Xs|Xn,Ys, Yu) = H(Xs| X, Ys)—H(Xs| X, Ys) =
0.

The expansion (b) in (1) follows from the chain rul

decomposition:
I(Xs, X Ys, Yr)
= 1(Xs, Xnr: Yur) + 1(Xs, Xar; Ys|Yar)
= I(Xam;Ym) + I(Xs;Ys|Yr)

magnitude termRys  sign term, conditioned ol , Rs|yy,

+I(Xs; YM|XM) —|—I(X1\4; YS‘XS, Y]w) .

(4)

(cross-term 1=0 (cross-term 2

The magnitude term coincides with one in (2), while the SigH(YS|XS Xar)
term is conditioned by, i.e., degraded version afy; that ’

ethe half-normal distribution, where—1" reflects the absence

of the sign information. The conditional term can be rewritt

as:
h(Yy| X)) = h(Z) — H(Ys| Xs, Xnr) (6)
that follows from the decomposition:
h(Z) = MY |X)=h(Ys, Ym|Xs, Xnr)
=h(Ynm|Xs, Xn) + H(Ys|Xs, Xnr, Yar)
=h(Ym|Xnm) + H(Ys|Xs, Xnr) (7)
with differential entropyh(Z) = 1/2log,(27ec?). The term
corresponds to the entropy of the event
related to the mismatch of the signs Bf and Xg under

causes a rate losBg,,, < Rg|s,,. This rate loss becomesXM that can be developed as:

more evident from the analysis of cross-term 2:
I(Xnr; Ys| Xs, Y )=H(Ys| Xs,Yn) — H(Ys|Xs, Xar, Yar)
=H(Ys|Xs,Yn) — H(Ys|Xs, Xar). (5)

FinaIIy,I(XS;YM|XM) = H(Xs‘X]u)—H(Xs|XM,Y]\/j) =
0. [ |

H(Ys|Xg, Xar)= H(Ys|Xs,xnm) f(xnm)de
X

=Ef(zu) [H (Ys| Xs, 2r)]
=E f(2nn) [Ho(Pr[Ys # Xs|zas])]

:Ef(l‘M)[HQ(PbIl'M)]v 8)
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where f(zar) = \/#TX exp[—52¢] and Rsjon=1(Xs;Ys|Xar)
Pb\JFM Pr[Ys # Xg|zn] =1- / H, [Q (W>:| flzar)dzpr.  (13)
=Pr[Vs = —1|Xg = +1, 22]Pr[Xs = +1] Xt 9z
+Pr[Ys = +1|Xs = —1, 2 ]Pr[Xs = —1] The sign term in the decomposition (1(b)) is:
=Pr Y = —1|XS = —l—l,LUM} I(X5; Ys|YM):H(Ys|YM) — H(Ys‘Xs, YM)
0
=1— H(Ys|Xs,Yn). 14

o ) The termH (Ys|Xs, Yy ) corresponds to the mismatch of the
1 < [_(?‘/IM)]d signs between input and output undéy; and similar to (8)

= e p
—oo V270, 20% can be rewritten as:
=Q <W) . 9) H(Ys|Xs,Yar)=E () [H(Ys|Xs, ynr)]
oz
:Ef(yM)[HQ(Pr[YS # XS‘.'UM])]
Substituting (9) into (8) yields:
9O e ®)y ar =Ef(yan) [H2(Poy, )], (15)
1500 = [0 (24| feandon. G0y
Alternatively, one can find the conditional entropy (6) as: Pyjynr =Pr[Ys # Xslym]
h(Yar|Xnr) (@)
=E 2 PrYs # Xslz
_fXM fyM f (s zar) logy (f (yarlaar)) dynrdaa, awln [PrlYs 7 Xsloa]
() T M
. (11) :]Ef(IM\yM) {Q ()}
where  the  conditional pdf  f(yamlzar) = oz

1 _ (—ym—zm)? 1 _ (ym—zm)®
oro? exp[ 202 + = ex 3

exp 5
2 g

is characterized by folded norma distribution.

Remark 3. The conditional entropyh(Y,|X,,) converges where  the  conditional  pdf f(xzar|yar) =

to the entropy ofh(Z) for the regime of small degrada-__1 Xp [( T — pwf]

tions, when the termH (Ys|Xgs, X»s) tends to zero in (6). \/%in 20% )y

:/ Q <W) flemlym)dzar, (16)
Xnr 0z

For high degradations, the terfii(Ys|Xg, X»s) tends to 1 1 (@m—pym)® |
and h(Yas|X ) converges to the entropy of channel nmsq/zmxw exp 20% )y is represented by a folded
magnitudeh(Zy;) = h(Z )— 1. Denoting the signal-to-noise normal distribution with p = o¢%/(c% + o0%) and
ratio asSNR = 10log,, 25, we present the behavior ofUX|Y 0%0%/(c% +0%) and (a) corresponds to the MMSE
Z
h(Ya|Xn), h(Z), and h(Zy) in Fig. 2. The conditional estimation ofX for a givenY: & = E[XY]/E[X] = py; (b)
entropy h(Yy;| Xs) was computed according to (6) and (11follow from (9). Substituting (16) into (15) yields:
by numerical integration. Rgjyy =1 — H(Ys|Xs,Yu) =
. U= Py Ha [T, @ (32) Falimodon | S
_Qh & O’LYU\)\U J (17)
; z Remark4. In the case of no channel state information (CSI)
5o about the stater), of channelp(ys|zs, za), the rate is:
£ Rsip = 1(Xs;Ys|0) =1 — Ha(Py), (18)
4 A
-0 20 10 (e g0 20 30 where P, = E¢(,,,)[Pyjz,,] COrresponds to the average prob-

ability of bit error.

This situation corresponds to identification based on hard
fingerprints, where only the sign information is used for

2) Sign term: In the decomposition (1), there are two sigifi€c0ding. We present the resulting rafég and R, with
terms conditioned onX,; and Ya;. The sign term in the respect to the capacity of the AWGN channel denoted as

Fig. 2. Behavior of conditional entroply(Yas|Xas) with respect toh(Z)
and h(Z]u).

decomposition (1(a)) is: Cia = 3log, (1 + UX) in Fig.3a andRgy;,,, Rsy,, and
T(Xs3 YslXa)=H(¥s|Xar) = H(¥s|Xs, Xur) ]F\?g‘rﬁalrnkSngz?l magnitude decomposition of the mutual infor
=H(Ys) — H(Ys|Xs, Xn). (12)

mation for AWGN).The decomposition of’;; for the AWGN
The entropyH (Ys) = 1 due to the symmetry of the Gaussiarchannel results into the rate®,, and Rg|,,, that in sum
pdf of Y'; the second term is given by (10). Thus, (12) yieldsoincide with the capacity of the AWGN channel. At high
SNR, the achievable rat&g|,,, converges to 1 bit/channel



. I wherePr® = [**° f(zpr)day andPr? = fOT" f(zar)dzyy

5 E o8 correspond to probabilities of observing the strong andkwea

2 208 channels, respectively. The corresponding identificatates

3 ' Z o4 are:

<05 Eos RS, =Pr {1 —H, (Pljw” : (21)
Y555 :ZE“SNF?, P R T ':igSngy qd0 2 %0 Rg‘/zM =pv [1 — Hy (Pb‘/l‘ﬂ/tM>] , (22)

(@) (b)

Fig. 3. The rates for sign-magnitude decomposition: (a) aehbiéty of

and the total rate is:

AWGN capacity by sum of the rates for magnitud, and signRg|,,, RéCh = Rg + RZY . (23)
channels; (b) achievable rates under perfegt, partial side information based (2 2y |zae
onyxs and zero side information about the chanp@ds|zs, zar). Remark8. The crossover probabilities for strong and weak
channels based on the degraded CSI (giygn are:
. 1 “+00
s
use that exactly corresponds to the difference betw&grand Pb|yM = o8 Pyjyus fyar)dyas, (24)
Ryy. r Ty
T,

Remark6. The impact of side information about the BSC state w 1 Y
TM- P Bolyas = PV /o Py f(yar)dynr, (25)

« the presence of perfect side information about the BS@hereTy is selected to satisfy abower® = ["> f(yar)dyn
statex); enhances the rate with respect to the degraded W T, Yo e
versiony,, at low SN R, wherey,, is less reliable; andPr = Jo* f(yar)dyas. The corresponding identification

« the rateRg),,, approaches rat&g,,, at highSNR that rates are:
indicates that the decoding in the sign channel can be ng =pr® {1 — Hy (Pbs‘yM)} ) (26)
performed independently from the magnitude channel; W W W

« blind decoding without any information abowut,, often Rgjy,, =Pr [1 — H (PblyMﬂ J @7)
used in digital fingerprinting, represents about 0.15 bifq the total rate yields:
loss with respect tdRg,,, (SNR =~ 10dB).

p Slear ( ) R?\:;M = Rg‘w + Rg“’w. (28)
I_”' CH.ANNEL .SPLITTING AND P.OLARIZATION ~ Remark9. The total crossover probabilit}, remains the same
In this Section we introduce a practical model that achieves for the case of no CSI:
the above theoretical limits based ahannel splitting. 5 W
Along this way, we will demonstrate the effect of rate b= / ooy f(ar)dzne = Propy, +Pr P
M

. . .. . X
concentration in a few coefficients that we will refer to as (29)
channelpolarization. The cha_nnel splitting and polarization The channel splitting by the selection of the threshdld
will be demonstrated for the sign channel. can be performed according to the several strategies:

The channel splitting model assumes that the channel in- _ o 2Ch 2Ch
put vector xg can be transmitted via several BSCs with * tsotrztegr%athmjx'rglztehégfe:ic::tgl lrii:ﬁggslw oorr gSIyM
parameters defined by the state vectgr according to the ppr pper . Sl Slyn
model p(ys|zs, zar). In the most simple case of 2-channel respectively, that gives optimal values of threshdltis,
splitting, two BSCs are considered. The channel splittisg i g?gz;yopt ;c)rrrii?r:;ngR;obabilitiesPS or PS
accomplished based on the available side informatignor * com Igiit [02SONS ar? d privac amb‘giﬁjicationb‘@f
ya and can be implemented by thresholding of the magni- , piexity P ) y amp -
tude coefficients with a thresholdl. Equivalently, the same According to strategy 1, the binary channel splitting ap-
proportion of coefficients can be chosen based on sorting R§Paches theoretical performance limits under the optimal
the N magnitude coefficients ok,s or ya and selecting thres_hold s_electlon as shown in Fig. 4a. The remaining
the L largest ones. Thé bits related to the large magnituded@P is easily compensated by more accurate models using
coefficients are considered as those belonging tostheng MOre channels in splitting. In fact, two-channel splittican

BSC with the cross-over probabilit,” and the remaining to be considered as the first level decompositionagf =
the weak one characterized by’bW. (Zary, T,y -, X gy, ) @CCOrding to the multilevel coding frame-

k [6]. Th imal thresholdd, T, h
Remark7. The crossover probabilities for strong and wea ork [6] e optimal threshold,,, and are shown

for

opt Yopt

Fig. 4b. To exemplify strategy 2 we show in Fig. 5a the

channels based on the pe:ifd CSI (given) are: pairs of crossover probabilities for strong and weak chinne

1 der perfect and degraded CSI that resulted from the girate
pPS = Py )dzar, 19) underp 9 8
blear = pyS [ blaar f(@a0)dTar (19) 1. Fig. 5b shows the same pairs for the fixed thresholds
W 1 T T and Ty, where one can clearly observe the significant
Pyjon = WA Pyjor f(@ar)dan, (20)  reduction ofpy,,, or By, that asymptotically goes to zero

for SNR > 15 dB.
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Fig. 5. Probabilities of bit errors: (a) fdF,,, andTy,,,; (b) for Tx =1 and signs codebooks;
and correspondingy . « security and privacy amplification of biometrics and
privacy-preserving content identification as the extemsio
to [3].

Remark10 (Channel polarization).An interesting phenome-
non is observed foff, andTy, ,, when practically all rate IV. CoNCLUSION

is concentrated in the strong channel, iBg,,, ~ Rg our In thi; paper, we corllside.r.sigrj-magni_tud(.e decompqsition of
andRgy,,, ~ RglyM after a certairS N R. It means that weak mutugl information for identification applications. We siofer
channels can be disregarded from the consideration. Mergoyhe sign channel and demonstrate the effect of rate coreentr
the positions of the bits belonging to the strong channdi@n under proper channel splitting parameters. This togeho
can be reliably estimated. We will refer to the effect of ratean be of interest for the design of soft multistage decoding
concentration in strong channels dsinnel polarization.  @lgorithms that can trade-off performance and complexity.
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