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Abstract

This paper is dedicated to the performance analysis of nbhi@sed identification using binary
fingerprints and constrained list-based decoding. We ftataicontent-based identification as a multiple
hypothesis test and develop analytical models of its peréorce in terms of probabilities of correct
detection/miss and false acceptance for a class of staligthodels, which captures the correlation
between elements of either the content or its extractedifesit Furthermore, in order to determine the
block/codeword length impact on the identification’s aeoyr we analyse exponents of these probabilities
of errors. Finally, we develop a probabilistic model, jfigtig the accuracy of identification based on
list decoding by evaluating the position of the queried emn the output list. The obtained results
make it possible to characterize the performance of ti@dhli unique decoding, based on the maximum
likelihood for the situations when the decoder fails to proglthe correct index. This paper also contains

experimental results that confirm theoretical findings.

Index Terms
Content-based identification, digital fingerprint, coasted list-based decoding, order statistics, miss
error exponent, false acceptance error exponent.

. INTRODUCTION

In today’s world, digital reproduction tools and user gexted content GC) websites, such as
Youtube, which enable massive distribution, sharing andage of multimedia contents, have undergone

an impressive evolution, providing professional solusibmvarious groups of users. Besides these obvious
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advantages, these tools offer, at the same time, unpreeedpaossibilities for counterfeiters to virtually
reproduce any physical or digital items, i.e., images, @&leaudiofiles, documents in electronic or
printed form, fake biometrics or any luxury goods or art abje Thus, the issue of integrity in content

identification becomes a critical one demanding an urgelotisa for various applications.
The content based identificatio€&l) problem can be considered as a multiple hypothesis testing

problem based on the Neyman—Pearson criterion [3], [4] W8]le the cost for making the wrong decision
should be adjusted for each particular application. Sinost®BI systems deal with critical and sensitive
decisions in security applications, such as biometricafertt identification for copyright protection and
illegal copy detection, etc., this cost is relatively higto less important are the consequences of the
wrong identification of physical objects such as over-teated or fake medications, objects of art or
luxury goods [6]. Therefore, under these conditions,itlentification problems defined as the multiple
hypothesis test with\/ + 1-alternatives, wheréd/ is the number of contents to be identified and the
additional hypothesis stands for the erasure, if no mateh ke found. The performance of theBl
system is characterized by the probability of miss, i.e.emkthe genuine content is wrongly rejected,
and the probability of false acceptance, when the faked otec-independent entry is falsely accepted
as one ofM genuine contents. In each considered application, bothagtitities should be very small,
which makes it similar to the classical digital communioatsetup.

On the other hand, theBI systems are facing numerous additional requirementsecktatsuch issues
as identification complexity, privacy, security as well asmory storage [5]. The trade-off between these
requirements is a quite complex problem that still remainsolved. To address this trade—aifital
fingerprints are used [7], [8]. A digital fingerprint represents a shoobust and distinctive content
description. The main idea behind digital fingerprintingnsists in the extraction of a lower dimensional
content representation that is usually accomplished &safsl[6], [7], [8]. First a lower dimensional data
representation from a content or its extracted feature faiodd (dimensionality reduction). Secondly,
to address complexity, security, privacy and memory s@regguirements, the transformed data are
converted to a binary format. At the identification stagehesi binary (hard decoding) or real valued

guery (soft decoding) can be used [5].
One key factor that restricts the progress in this direcisorelated to the analysis of th&BI system

performance. This in turn requires to introduce tractalplalyical models forCBI. Moreover, in many
applications, data can be severely distorted and the chdsshique decoding might not be capable
of reasonably handling noisy inputs, thus resulting in ehhigte of erroroneus decisions. However, it

is known in digital communication that replacement of theque decoding decision rule by the list
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decoding with variable [9] or fixed [10] list size might help such a situation. The reason for this
enhancement is due to the fact that content degradationtroltginge the order of the likelihood of
the correct content. Since most of the identification teghes using unique decoding are based on the
maximum likelihood §IL) principle, the change of the order of the correct likelidawill incur an error.
However, this change might only cause the flip of the corigetihood position to the nearest positions in
its sorted list. Consequently, providing the list of mostlpable likelihoods of candidates might resolve
the problem as soon as the correct candidate is on the lish Suwsituation is mostly acceptable for
the above-mentioned multimedia security, biometrics ahgsigzal object security applications, where
the final decision is made by human means. Obviously, thegehafh decoding rule from ‘unique’ to
‘list’ decoding should be considered along with the rela@bf a constraint on the probability of false
acceptance. Nevertheless, the potential help of list dagdd the CBI systems is little investigated and
remains largely undiscovered with a few exceptions [1], [2]L]. Therefore, an investigation of the
impact of list decoding in the&BI applications is of great theoretical interest and praktiio@ortance.

In this paper, we analyze theBI for still images.

I[I. STATE-OF-THE-ART

One of the first attempts to establish the theoretical limitdhe CBI systems in biometrics applications
was performed by Willems et al. [12]. The authors demorstrdahat by using unique decoding under
the assumption of an infinite length of sequences, one camatie upper achievable rate given by
the mutual information between outputs of the enrollmerd a&tentification channels in the class of
discrete memoryless channeBMC)s. This result was derived using the concept of typicallt]|
The false acceptance event was not considered in [12], dubetdact that the probability of two
independent sequences being jointly typical is asympalyiovanishing. However, the obtained result
can not be directly applied to the correlated contents asvibald violate the principle of independence
in the concept of typicality. To address this problem, as waslto relax the typicality constraint on the
infinite length of sequences, Varna et al. [4] considered @B problem based on th&IL criterion
with the fidelity constraint for the images possessing looalrelations and finite length fingerprint
representations. The preservation of correlation in thatyi data representation unavoidably leads to
a decrease in entropy of fingerprints and thus to a decreafeitification rate as well as privacy
leakage. Moreover, distortions should be also treated gjibcial care due to their dependence upon
original data. These factors considerably impact the awguof the conveyed analysis that is performed

under certain assumptions. Independently, Voloshyngwetkal. [5] and Willems [14] considered ti@BI
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for the independent and identically distributed (i.i.dipdry data with finite length based on a bounded
distance decodeBQD) that can operate in erasure or list decoding modes simitar[9]. However, the
main focus of the above mentioned papers was on the analysisique decoding under privacy and
complexity constraints for finite length sequences. Thhe,impact of real data statistics still remains
uncovered.

Therefore, targeting an accurate performance analysibeo€BI systems, we will consider the per-
formance of theCBI based on digital fingerprints taking into account the diatisof real images.
Our analysis is accomplished in several stages. First, dieroto guarantee the optimal discriminative
power of binary fingerprints, one should maximize the entropthe fingerprinting output that requires
independence between fingerprint bits. Usually, such agotpps satisfied by the proper selection of a
linear mapper that is followed by binarization. Selectidnsach a mapper plays a crucial role at this
stage due to the following argument: if the input to binaitaa procedure is a vector with uncorrelated
components, the output is composed of pairwise indepertden{l5]. Moreover, if this input has the
jointly Gaussian distribution, the elements of the outpre eutually independent. The mapper that
possesses such properties is the Karhunen-Loeve tramgfirT) [16] that optimally decorrelates its
input for a given covariance matrix as well as optimally camis its energy into a few components,
making dimensionality reduction a straightforward pracdsowever, the price that must be paid for this
optimality is its data dependence and the necessity of upg#he transform matrix for new entries.
The latter issue gains importance due to the high compu@ticomplexity of this transform that can
be evaluated a®)(N?3), where N is the dimension of its input [17]. Additionally, the estititln of
covariance matrices for large databases can be prohigigsg@ensive. Besides the drawbacks indicated
above, the public disclosure of the basis vectors for a gatess of data models makes this transform
undesirable in the secure identification applications.

In order to ameliorate the issue of complexity, several agiprations of theKLT were proposed. These
include, for example, the Discrete Cosine Transfob@T) and Discrete Wavelet Transforrd\WT) [16],
which demonstrate a nearly optimal decorrelation of lgcathirrelated data. The basis vectors of these
transforms are fixed and independent of the statistics df itiqguts. Due to their decorrelation and energy
compaction capabilities, as well as the existence of fapldmentation algorithms, they are used as a
common tool in various signal and image processing apphcst However, the main drawback of such
fixed basis transforms consists in the public disclosurehefliasis vectors, which is rarely acceptable

for multimedia security applications [5].

One possible solution to this privacy/security shortcaynis a mapper that can be designed, based
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on random projectionsRP) [7]. The RP have been the object of much interest due to the fact that
they are capable of providing an approximate distance prasen, something also recently recognized
in the Compressed Sensing community for sparse data [18], Y¥hile the decorrelation property of
orthogonal transforms is well-known [16], tiR® are based on approximately orthogonal bases. Therefore,
the statistics of the projected data, i.e., the covariana#ixy are not well justified. On the other hand,
prior knowledge of the statistics of the extracted digitalyérprints is crucial for the evaluation of the
performance of the&BI systems. It is also interesting to explore the possibilitycambining theDCT

with the RP to benefit from both energy compaction and decorrelationetas security.
As mentioned above, the other important issue of@B¢ systems is their ability to deal with highly

distorted data. As a possible solution, one can envisioruieeof Forney’s [9] list decoding approach
as mentioned in [5]. However, in many identification apgiimas, the final sink of information will be a
human being. This constraint makes this type of list deapdimdesirable, due to the high variability of the
list size. Another solution, which is proposed by the awhar[1], is theConstrained List-Base(CLB)
decoding approach. In thHeLB decoding, which is a combination of Elias [10] and Forneigsdecoding
technigues in information transmission and coding apptoa, a limited number of candidates with the
largest likelihood functions that can satisfy a specifie#old is selected. The analysis accomplished in
[1] is based on the assumption that the contents are geddratependently and identically. Thus, one
of the main goals of this paper consists in the extension isfahalysis to a broader class of statistical
models with correlation. Moreover, one is often interestedhoosing system parameters, i.e., the length
of digital fingerprints, the decision threshold and the maxin number of candidates, to ensure that
the probabilities of miss and false acceptance are belotainelbounds. Hence, in this paper, besides
computing the exact probabilities of correct detection $aide acceptance, we derive bounds on the
probabilities of miss, the complement of the probabilitycofrect detection, and false acceptance for the
digital fingerprints of a given length. Further yet, to shdwe impact of the list decoding, we investigate
the probability that the correct entry of a database mightiiasome position of the list, depending on
the level of query degradation.
A. Contribution to the state-of-the-art

The main contribution of this paper can be summarized asvistl we analyze an identification setup
based on binary i.i.d. fingerprints. In this identificatiaigp, we exploit the€LB decoding in the binarized
projected domain for either contents or their extractetUfes that can be modelled by a correlation-based
model like a first order autoregressiveR(1)) process, which captures correlation between elennts

data [16]. Then, we investigate the fundamental performdingts in this setup by analysing probabilities
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of errors and establishing the error exponent bounds asasgetlleriving achievable identification rates.
Finally, we consider order statistics of the correct entopearance on the list in order to justify the
optimal list size for various operational modes. Theseltesxtend and deepen our preliminary findings
[1] and [2] in regard to the analysis of th&BI based on th&LB as well as the previously considered

contribution of [12].

To the best of our knowledge, the only work dealing with liscdding in the content fingerprinting
applications is [11]. The closest relevant work addressirgtheoretical analysis of correlated contents
and binary fingerprints under the unique decoding is [4]. phecipal differences with these papers can
be summarised as follows:

« the CLB decoding proposed in this paper differs from the one andlys¢11] in two ways!

— the type of list decodinghe list decoder proposed in [11] produces the variabtesiie based
on thresholding of likelihood functions computed for adirits while the list decoder considered
in this paper always outputs the list of candidates that sm¢®xceed the predefined list size.
The list decoding analysed in [11] represents better pedoice in terms of probability of miss
in exchange for the unbounded list size that is not alwaygatde in those applications where
the final sink is a human being;

— prior knowledge about channel statistiche decoder considered in [11] is based on some
generic distance, which can be matched with the channéststa while theCLB considered

in this paper is based on the Hamming distance deduced fdritiaey fingerprints.

« contrarily to [4], we consider a decorrelation approachebasn theRP which makes it possible
to generate binary fingerprints with asymptotically indegent and equal likely distributed bits;
this property could be of advantage for the maximizationhef achievable rate of binary fingerprint
identification, efficient fingerprint storage, privacy-peeving as well as extension of unique decoding
to more general list decoding rufes

The main extension of the results earlier published by thbars [1], [2] consists in:
« in [1], [2] we have assumed that the contents to be identifeadlme modeled as an i.i.d. Gaussian

process. Moreover, the impact RP which are approximate ortho-projectors was not considdred

11t should be pointed out that due to the different decodingtsgies, i.e., constrained list size in 6&B case and variable
list size in [11], the performance measure in terms of prdialof miss is different and that makes a direct comparison
unfeasible.

2In some applications, the extra correlation between fimigrits is favoured to strengthen the method with georoatri

transforms or to avoid computational complexity of declatien in large-scale applications.
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this manuscript, we extend this assumption from an i.i.dcess to an AR(1) Gaussian process and
we analyze the impact &®P on the statistics of the projected data by deriving uppembeu

« the performance analysis of identification systems progp@s¢l] and [2] was based only on exact
formulae of probabilities of miss and false acceptance,ravtiiee distortion channel was assumed
to be aBSC. In this manuscript, we derived upper bounds on the proitakilof miss and false
acceptance for a more geneiC distortion model,

« the numerical evaluations in [1] and [2] were based on syittliaita generated by an i.i.d. Gaussian
process, however, in this context we extend our validatissirhulations using a real image database,
Uncompressed Colour Image Database (UCID) [20].

The outline of this paper is as follows. In Section Ill, wergduce notations and definitions exploited
through this paper. Section IV defines the structure of teatification setup. In Section V, we consider
the statistics of data used in the identification setup andamstrate decorrelation and independence
preserving properties &&P. Section VI elaborates the fundamental limits of the introed identification

setup. Finally, the conclusions are presented in Sectioh VI

[11. N OTATIONS, DEFINITIONS AND PRELIMINARIES
A. General notations

Throughout this paper, we adopt the convention that a scatatom variable is denoted by a capital
letter X, a specific value it may take is denoted by the lower caser lettand its alphabet is designated
by the script letterX’. As for vectors, a boldface capital letté¢’¥ with a corresponding superscript
will denote anN-dimensional random vectaX” = {X[i]}}¥,, a boldface lower case letter’¥ will
represent its particular realization = {z[i]}Y ,, and the respective superalphabet is N8 Cartesian
power of X, i.e., ¥V. xV' stands for the transpose &f'. The expectation operator is designated by
E[-]. We useH,(-) to denote the entropy of a binary random variabl&, 0% ) stands for the Gaussian
distribution with mean: and variancer%.. Q(-) designates the Q-functio(V, p) denotes the Binomial
distribution with V trails and probability of succegs The Kullback-Leibler divergence between two
distributionsp(x) andq(z) on &' is defined asD(p(z)|g(x)) = > c» p(x) In p(z) “\ith the conventions

q(z)
that0In0 = 0, andpIn § = oo if p > 0.

B. Order statistics

Let V1, Vo, ..., Vy be M ii.d. random variables, each with a cumulative distribntfunction CDF)

F(v). Ther-th order statistic of thes#/ i.i.d. random variables is denoted bY,..,), which corresponds
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Fig. 1. The identification setup fd€Bl based on binary fingerprints.

to ther-th position ofv(.pr) < vy < oo < V) < -

- < vy for a specific outcomery,. ) (v),

the CDF of V|,..,p), is given by [21]:

Fioony(0)=Pr {V,.ary < v} = Pr{at leastr of V; are less than or equal g}

M
M I —1
= (V) Fen - rep @
since the term in the summand is the binomial probability thaactly: of V1, V5, ..., Vs are less than

or equal tow.

C. Random Projections

In RP, the original N-dimensional data are projected to ardimensional [ < N) subspace, by a
linear mappew <" drawn from a specified probability distribution. We furthesew rather thanw’ <"
for convenience. The key idea behind the dimensionalitpecédn usingRP is based on the Johnson-
Lindenstrauss lemma [18]: if points in a vector space argepted onto a randomly selected subspace of
suitably high dimension, then the distances between thetgpare approximately preserved. The choice
of the random matriXW is very important for satisfying the conditions of this lemnThe element§/;;
of W are often Gaussian distributed, but Achlioptas [22] haswshthat the Gaussian distribution can

be replaced by a much simpler Bernoulli distributiBn{1V;; % We also consider theP

— 1
=)=
based on the above Bernoulli distribution due to the sinitpliof statistical analysis of projected data.

IV. THE IDENTIFICATION SETUP

The identification setup under analysis shown in Fig. IV ¢stsf two main phasespntent enrollment

and content identification
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In the content enroliment phase, the digital fingerprints extracted from either contents or their
extracted features and stored irDatabase The Database is a collection 8f labelled binary vectors
denoted by:

bL(m) e {0,1}F, me{1,..., M},
wherebl(m) = o(x" (m)) is a digital fingerprint extracted from either the contenit®extracted feature
xV(m) € XN, which is drawn from a common stationary distributipix” ). (-) is a digital fingerprint
extraction function that can be key-dependent. Convetsidiinary in the fingerprint extraction is applied
SO0 as to cope with storage, privacy, security and compledatystraints. However, since the use of the
secret key does not impact statistical analysis of the sgtepto its symmetrical presence at enroliment

and identification stages, we consider only a key-indepeindigital fingerprint generation in this paper.
In the content identification phase, for a given qugfy the digital fingerprint is extracted similar to

the enrollment phase, i.eb§ = p(y™V). Then, the decoder decides whether the query is relevaoine s
entries of the Database, and if so, decides to which one®r®ige, it produces an erasure.

A. ldentification Problem as a Decoding Problem

In the case the query digital fingerpribﬁf is related to some elemeht:(m) of the Database, this
relationship can be modeled as a binary channel with thesitran probabilityp(b§|b§(m)). If the
query digital fingerprin1b§ is unrelated to any entry of the Database, we assumdo@hdﬂ drawn from
p(by) = Ypreqorye P(bx)p(by[b%). Therefore, we can define the content identification probiema
statistical test withM/ 4+ 1 hypotheses:

Ho : By ~ p(by)
o BL ~ plbLlbLim), ?
where?#, and#,, correspond to the cases thmft is unrelated to any entry of the Database, hrf;dis

related to then!” entry of the Database, respectively.

B. Constrained List Based Decoder

We define theCLB decoding as follows:
1) For each entrybZ(m),1 < m < M, of the Database, the decoder computes log-normalized-
likelihoods £,,, = In 2 P<(m)
p(by)
2) The computed log-normalized-likelihoods are sortedsoeading order.
3) The N; indices with the largest log-normalized-likelihood fuiocis are chosen. Then, their indices
are put in the primary lisf\; one-by-one, i.e., the first index iV; corresponds to the largest one

and so forth. Parametéy, is referred to as the primary list size.
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4) The final list of candidates is defined as:

N ={m €N : Ly, > yL}, 3)

where~ controls the number of final candidates and defines the r@peoption.

The performance metrics of theBl are defined by the probability of correct detectid;

M
Py=1—="Pyp=> Pr{(meN)N (L >7vL)|Hm}Pr{Hm}, (4)
m=1

where P,,, denotes the probability of miss, and the probability of daéeceptance:

Py = Pr{N] # 2[H)}. 5)

V. THE STATISTICAL ANALYSIS OF DIGITAL FINGERPRINT EXTRACTION

The digital fingerprint extraction functiog(-) works as follows:

1) The dimensionality of a content or its extracted featktgm) and a queryy” is reduced from
N to L by applying theRP operator,w’*" [6]. Note thatRP are approximatelyrthoprojectors
i.e., wwl ~ I, wherew ¢ \/—%{il}LXN with the probability mass functionrPMF) Pr{W;; =
i\%ﬁ} =1,1<i<Landl<j<N.Fora givenw, the projectionsc”(m) andy’ are obtained
by %X (m) = wx™(m) andy* = wy".

2) L-length binary digital fingerprintsbf, andbl(m), are derived by taking the sign of the projected
data, i.e..bL(m) = {sign(z[i](m))}~, and b§ = {sign(gli])}L,, sign(a) = 1, if a > 0, and0,

otherwise.

A. The Statistics of Digital Fingerprints Extracted from r@dated Data

In this Section, we investigate the statistics of digitagérprints obtained by theP. We assume the
input X~ can be modelled as anR(1) Gaussian process. The justification of the use of thisahi
two-fold. First, X'V can be considered as an image that is characterized by loo@lations between
neighbouring pixels. To capture these correlations, a raurob statistical models such as autoregressive
and Markov random field are proposed [16]. TAR(1) Gaussian process is considered as one comprised
of simple yet powerful models that accurately representltical correlations present in imagés"

[16]. Secondly, in the casX” represents some robust features extracted from an origoveent to
cope with potential malicious attacks, such an assumptiah rnight yet be valid. For example, SIFT
[23], SURF [24] or Fourier-Mellin [25] transform used for &ge description includes a certain level of
correlation among samples of extracted features that candaelled as a®R(1) model. Finally, many

fingerprinting algorithms operates in decorrelation doaraa&@uch a®CT or DWT [26], where the residual
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correlation among components of transformation coeffisiean be modelled asR(1) [27] . Assuming

this model, the covariance matrix in the projected domaigiven by:

Kz = EwX XV wi] = wKew', (6)
whereK, is defined by [16]: ) _
1 p pN !
Keook| 0 ™

wherec?% and0 < p < 1 are variance and the normalized correlation coefficiespeetively. We use

the following Proposition for statistical modeling of pecied data.

Proposition 1. Let the elements of thRP matrix, w of size L x N and1 < L < N, be drawn fronPMF
Pr{W;; = iﬁ} = 1, and X" be a real zero-mean random vector modelled asAR€l) Gaussian

process with variance3, and normalized correlation coefficiept Then, we have:

g 1
Pr<{ max|KY.| > Bo2 } < =, 8a
(i 0% b < 1 82
i 2 2 2
Pr {max]K;{i — %] > aaX} < (8b)

()
whereKY, denotes théi, j)" element oKz, = (ﬂ‘_’f) /2 In L, anda = (1‘1_pr1> \/EpnL.

Proof: Appendix A. [ |

Remark 1. For a sufficiently largeV andL, L < N, « — 0 and — 0, Kxx asymptotically converges
to 0% I, with high probability. Moreover, from the fact that the sceris theAR(1) Gaussian process,
which implies thatX? is jointly Gaussian, an&Pis a linear transform, the projected dat follow the
jointly Gaussian distribution, i.eX” ~ A(0, Kzx). Therefore, since elements Xf” are asymptotically
uncorrelatedKxzz ~ a§(1L, one can conclude thX~ are asymptotically i.i.d. In addition, the elements
of the digital fingerprint extracted fro’X’ asymptotically consist of_ i.i.d. Bernoulli(%) bits due to

symmetry of the Gaussian distribution function.

Remark 2. In this casew is chosen to consist of the eigenvectorskf,, i.e., in theKLT, one will
obtain the decorrelateKzx with the ordered main diagonal elemeii{g: > K22 > ... > KXV [16].
The difference with theRP consists in perfect decorrelation versus the asymptoté& inon(8a) and the

power—law decaying character of main diagonal elementugaxpproximately uniform ones in (8b) [16].

June 21, 2012 DRAFT



12

B. The Statistics of Digital Fingerprint Extracted from Que

The queryy” under the true hypothesis represents the distorted veddior?’ that might undergo
various distortions ranging from the simple addition ofnsiindependent noise to signal dependent
distortions such as lossy compression or even geometraradforms. The statistical modelling of these
distortions is quite a challenging task by itself. Howeverwithstand geometrical transforms, many
fingerprinting algorithms use robust features. In this cts® matching of geometrically distorted images
is based on the matching of robust features based on Euclidestance [28] where the effect of
geometrical distortions is converted into the independelditive noise [29]. In the general case, one can
assume that the resulting noise comes from the broad farhily.ch Generalized Gaussian distributions
(GGD) with the shape parameter less than or equal to 2. ThHebdison parameters will impact the
statistics of query fingerprint and its mismatch with the érgint of the original content. As will be
shown below, the Gaussian distribution, that is a particaése of the GGD with the shape parameter
equals to 2, produces the largest mismatch in terms of Haqdistance due to the highest cross-over
probability among all GGDs with the bounded variance. Tfeeee our analysis will be concentrated on
the consideration of the worst case crossover probabilibyided by the Gaussian noise. Consider the
queryy? to be a noisy version of a piece of content or its extractetlfeathat can be modeled as the
AR(1) Gaussian process and is observed through an Additivae/Baussian NoiseA(VGN) channel,
YV = XN +ZV, whereZ"Y ~ N(0,0%Ix) ando? is the variance of the noise. At the output of the
first step of digital fingerprinting, we havé” = X’ +Z~. From Proposition 1, we can assume tbt,
asymptotically follows the distribution/ (0, 0%.11,). To justify the statistics oZ, we have the following

corollary of Proposition 1.

Corollary 1. Let the elements of thRP matrix, w, be generated as in Proposition 1, & is drawni.i.d.
from a common stationary distribution with varianeg. Then, the diagonal elements of the covariance
matrix of the projected nois&’ = wZ" are equal too?, i.e., Vi,KZ. = 0%, and all off-diagonal

Zzz

elements ofK;; satisfy:

g 1
Pr{ max|K%| > do? } < =, 9
{maiicl) > 03 | < ©
where§ = /2 1In L.
Proof: Appendix B. |

Remark 3. For a sufficiently largeV andL, L < N, § — 0, K3z asymptotically converges 071, with
high probability. SinceZ” is i.i.d. Gaussian an&P is a linear transformZ’ is jointly Gaussian whose

elements are asymptotically uncorrelated, %, ~ N'(0,K3;), Kz; ~ 021y, thus Z~ asymptotically
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follows i.i.d. Gaussian distribution. Consequently, th@nsformed channel is asymptotically a discrete

memoryless channel, i.ep(b%[bk) = [T, p(by|i]|bs[i]).
Remark 4. The obtained results are also applicable to the noise m@dal¢heAR(1) Gaussian process.

Remark 5. From Proposition 1 and Corollary Iy~ is a sum of two independent random vectors
XL and Z*, where XX ~ N(0,Kzz),Kzzx =~ o%Ir andZL ~ N(0,K3;), Kzz ~ o211. Therefore,
L'~ N(0,Kyy), whereKg¢ =~ (0% + 0%)I1, is a jointly Gaussian distributed random vector with
asymptotically uncorrelated elements, which implies rtlveinvergent independence. Moreover, one can
conclude thaB§ consists of bits that are asymptotically i.i.CBernoulli(%) due to symmetry of the zero
mean Gaussian distribution. Conditioned &y),, the relation betweeb’(m) and b§ can be modeled
by the Binary Symmetric ChanneB$C) with crossover probability [5]:
1 2
P, = — arccos ( %) . (10)
™ ox +07
To demonstrate that the i.i.d. Gaussian noise indeed repieshe worst case in terms of resultdit
we consider the projected da¥” ~ N(0,0%1}) corrupted by additive noise that follows i.i.d. GGD,
resulting in observatio¥ - = XX + ZL.
The crossover probability in this case is defined as:

P, = Pr[sign(X) # sign(Y)] = Pr[Y > OIX < 0]Pr[X < 0] 4+ Pr[Y < 0/X > 0]Pr[X > 0]

- _ 10 2
Wpz > / / exp< il ) 2 exp (—”“"—2) atdi  (11)
2wI( 1/9 w om0, 20%

wherep = 0, 0 is the shape parametes? = 0%?%%% [(z) = [y~ e~ "t*~!dt is the Gamma function,

and (a) follows from the fact that andZ have symmetric distributions. Besides the Gaussian nesdio

above, and Laplacian, which is a particular case of GGD With 1, where theP, can be computed

o2 o2
P, =exp <—§> Q < 2—§> , (12)
oz oz

it is difficult to find closed form expressions fdr, for all other values o < 2. For the comparison

analytically:

reasons, we numerically compufg for several values of the shape parameters, shown in Fig.s2. A
expected, the Gaussi@aDF (f = 2) is characterized by the highest crossover probability iamdll be
used in all future considerations.
Under these conditions, the corresponding hypothesese@rbe:
Ho : BL ~ 5,

(13)
M+ BL ~ Pl (1 — P)L=dn
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whered,,, £ dy (b}, bk(m)) is the Hamming distance betwedfy andbZ (i) that was also considered

in [30].
VI. THEORETICAL PERFORMANCEANALYSIS OF THE IDENTIFICATION SETUP

In this section, we analyze the performance of the identiioasetup based of; and P; defined in
Section IV.
A. Probability of Correct Detection

In this subsection, we evaluate the probability of correetedtion P;. From Remark 5, the log-
normalized likelihoodZ,, conditioned orH,, is given by:
Pyl (1 = Pk

1\ L ’
(2)

The log-normalized-likelihood is a decreasing functiondpf for P, € [0,0.5), where the Hamming

Ly, =In (14)

distanced,,, is a realization of the random variablg,,, which can be considered as a sufficient statistic
in the analyzed setup to evaluate the probability of cordetéction. According to Remark 1 all entries
of the Database are considered to be i.i.d., moreover, warssshat all entries can be queried equally
likely, i.e., Pr{H,,} = % Therefore, the overall probability of correct detectiared not depend on the

particular indexm. And, the analysis is accomplished only for the first index

Py =Pr{(m1 € Ni) N (L1 > VL) [H1} & Pr{(Liar—nun—1) < £1) O (L1 > YL)|Hy}

nL
b
o Pr{(Dn,:v—-1) > D1) N (D1 < nL)[H1} = ZPY{D(NZ:M—I) > d|H1, D1 = d}pp,(d), (15)
d=0
where pp, (d) denotes thePMF of Dy, n = %&:g’) is obtained from the replacement of the

condition £,,, > vL by D; < nL, (a) follows from the fact that the first evemt; € A occurs if and
only if £, is among theN; largest of{L1, Ly, ..., Ly}, which is equivalent td L /—n,:p—1) < £1),

(b) holds because the log-normalized likelihood is a decreafsinction of the Hamming distance.
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By using Remarks 1 and 5, conditioned &fi, the sufficient statistics mentioned above have the

following distributions forl < m < M:
B(L, By),for m =1,
D,, ~ (16)
B(L,3%), for m # 1.

Consequently, by substituting (1) and (16) into (15), therext detection probability over theSC is

given by:
e o L2 O (O o £ 0

(17)

B. Probability of False Acceptance
The main reason to consider the probability of false acemgtds to investigate the reliability of
identification with respect to the acceptance of querieschvare unrelated to entries of the Database.

To evaluateP;, we define the following events:
ED('L:IW) = {D(ZM) < nL’%OL (18)

wherel < i < N; and Ep,,,,, happens if the” of M ascendingly ranked i.i.d. Hamming distances
between the query and entries of the Database is smallerthleathreshold. Moreover, from Remarks 1

and 5, conditioned oftg, Dy, ~ B (L, 1) for 1 <m < M. The probability of false acceptance is:
Py = Pr{UYy B, [Ho} = 1-Pr{ny B, [Ho} @ 1=Pr{Bf,, [Ho} = Pr{Ep,,., [Ho} (19)

where Ef,  is the complement ofip,,,,,, and (a) follows from the fact that if the evenky, |

)
occurs the remaining events are certain. Then, the praotyabflfalse acceptance is given by:

NEIE Y
P; = Pr{ | min Dy < ano} =1- [1 - (§> > (33)] . (20)

=0

Remark 6. The probability of false acceptance is independent of tlmamy list size and the channel

crossover probability.

Remark 7. For the casé\/ = 1 and N; = 1, P; and Py coincide with the probabilities of detection and

false alarm under the authentication setup using binanefprints defined in [14], [30].

In the following, we will present the results for large-se#@entification applications to investigate the
impact of database cardinality/, fingerprint lengthL and primary list sizeV; on the performance of
the CBI system. In Fig. 3, we demonstrate the receiver operatidmaiacteristic ROC) computed using

(17) and (20) for various values of the parameters\/ and ;. Fig. 3a shows th®OC curves for the
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Fig. 3. TheCLB decoding performance analysis for binary fingerprints.

range ofSNRs between—4dB and0dB, whereSNR = 10log;, % and primary list size\; = 32 for

M = 239 digital fingerprints of lengti256 bits in the Database. We observe that asSN& decreases,
the probability of correct detectioR; reduces for a given probability of false acceptarge Fig. 3b
examines the influence of the number of fingerprihfsin the Database on the decoder performance
for a fixed fingerprint lengthl = 256 bits and theSNR=-4dB. As M increases, the probability of false
acceptance increases and the probability of correct detedecreases. Consequently, for a givien

the Py is higher, or equivalently, for a fixe®, , the probability of correct detection is lower. However,
this improvement occurs in the region with high. Fig. 3c demonstrates the decoder performance
enhancement using longer digital fingerprints for a givestagtion level, allowing for the optimization
of the CBI system design with respect to this parameter. Finally, Bij.demonstrates the impact of
list size on theROC. Although we can increase the performance in termPgfby increasing the list
size N, this improvement is restricted by a certain range of primest sizes. This confirms thallLB
decoding can enhance the correct decoding at the cost cdirrgléhe constraint on the probability of

false acceptance introduced via the increased list size.
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C. Miss Error Exponent
In this section, we derive bounds on the probability of migkjch is complementary td;, for the
DMC. Conditioned oriHy, the probability of miss of the identification system basadle CLB decoding
is given by:
P =Pr{m; ¢ NJULy <yL|H1} =Pr{my ¢ NyN Ly > yL|H1} + Pr{Ly < yL|H:1} = P), + P}/,
(21)
The first term in (21) is referred to as tipeobability of miss of the first kindP!,, and the second term

is the probability of miss of the second kiné!!.

Remark 8. Under variable list size decoding approach [11], wheregtli@no restriction over the list of

candidatesP!, equals to 0.

Proposition 2. Consider aDMC with a transition probabilityp(y|xz), and a Database of block length
L with M = elF entries independently and identically generated accgrttinp(x), and letp(y) =
> zex P(@)p(y|r). Suppose that the quegy” acts as an input to the content-based identification system

and theCLB decoding is applied. The averageB probability of miss is bounded by:

P, <exp[-N,L(E(y) +7v — R)] + exp[-LE(7)] (22a)
< 2exp[—Lmin{N;(E(y) +7 — R), E(7)}], (22b)
where
B(y) = max ~In} > p(a)p(y)p(ylz)' e (23)
yeyzeX

and~ is a fixed threshold.

Proof: Appendix C. |
The miss error exponent is referred to s = min{N;(E(y) +~v — R), E(v)}.

Remark 9. For, N; = 1, (22a) coincides with the error probability given in [31} foommunications.

Corollary 2. For anyy < C, whereC = D(p(z,y)||p(z)p(y)) is the DMC capacity,E(y) > 0 and
E(y) - 0asy— C.

Proof: Appendix D. |

Corollary 3. For the binary symmetric channel with a crossover probighbif,, the list-decoding-based

average probability of miss is bounded, for apyP, < n < %:
Py, < {exp[~L(In2 — R — Hy(n))]}™" + exp[~LD (|| P;)] (24a)

< 2exp[—Lmin{Ni(In2 — R — Hy(n)), D(n]| )}]. (24b)
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Proof: Appendix E. [ |
The corresponding miss error exponent ove8B€is given byE,, = min{ N;(In 2—R—Hs(n)), D(n||P)}.

Remark 10. For the caseN, = 1, i.e., unique decoding mode, the obtained miss probaldaynd

coincides with the result provided in [5], [14]. I¥; > 1, i.e., list decoding modeP! converges td up

to IV; times exponentially faster than for unique decoding.

Remark 11. For P, < n < % and R < In2 — Hjy(n), there exist fingerprints with rat& and miss
probability P,, such thatimy, ., P,, = 0.
D. False Acceptance Error Exponent

In this section, we derive the upper bound Bp for the DMC.

Proposition 3. Consider abMC with a transition probabilityp(y|z), and a database of block length
L with M = eF entries independently and identically generated accgrtbnp(z), and letp(y) =
> zex P(@)p(y|r). Suppose that the quegy” acts as an input to the content-based identification system

and theCLB decoding is used. The average list-decoding-based piabaififalse acceptance is bounded

by:
Py < exp[-L(E(y) +v — R)]. (25)

where E(~) is defined in (23).

Proof: Appendix F. [ |
The false acceptance error exponent is referred td'jas F(y) + v — R.
Remark 12. If we sety = R andN; = 1, thenP,, < 2exp[—LE(R)] and Py < exp[—LE(R)|. Since
E(R) >0 for R < C, P, =+ 0 and Py — 0 as L — oo. Moreover, this holds fo? close toC, then
one can conclude that the identification capacity is aclieva
Corollary 4. For theBSC with crossover probability?,, the CLB average probability of false acceptance
is bounded, for any, P, < < 3:
Py < exp[~L(In2 — R — Ha(n))). (26)
Proof: Appendix G. [ |
The corresponding false acceptance error exponent oveB3gs given by £y =1In2 — R — Ha ().
Remark 13. For P, < n < % and R < In2 — Hs(n) there exist fingerprints with the rate and false
acceptance probability’s such thatlim;_,., Py = 0.
Remark 14. From Remarks 11 and 13, bof,, and P, go to zero asL — oo. Moreover, this holds
for n arbitrarily close toP,. Therefore, the identification rate approaches the identification capacity in

the fingerprint domairC' = I(B,; By) = In2 — Hy(P,) [32].
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Fig. 4. Error exponents of the probabilities of miss andefadsceptance as a function of (a) decision thresholar a fixed
R and (b)R.

Fig. 4a and Fig. 4b exemplify the behaviour of error exposd@®) and (26) as functions of the
decision threshold and the identification rate, respelgtifdese results were obtained using the following
identification system operational parametefs= 64, R = 0.001, N; = 32, P, = 0.25 obtained for
SNR = 0dB. Fig. 4a demonstrates that the probabilities of miss aiskefacceptance exponentially
vanish to zero as functions of the fingerprint length withesathat exponentially decrease/grow with an
increase in the decision threshold. In Fig. 4b, the obtamsdlts demonstrate how the performance of

the CBI degrades with the system identification rate.

E. Probabilistic Analysis of List Content

In this Section, we analyze tiMF of the correct entry position on the resulting lisf. Because of
the symmetric structure of the Database, we need only cen#ii¢ case of the query being related to
the first entry of the Database. Conditioned &g, the probability that the first index falls in thg

position of the primary list is given by:

=
g

P(j) r{(Liar—jinr—1) < L£1) N (Lvr—j1m—1) = £1)[Ha}

—~
=

Pr{(D¢.pr—1) > d) N (D(j—1:p-1) < d)[H1, D1 = d}pp, (d)

o EO] [ 0] e

where(a) follows from the fact that the first index falls in th@" position, if £; is smaller than(j — 1)

—~
o
~

(]~ I0]=

a
Il

0
largest of {Lo,...,L,,} and larger than the restp) holds similar to (15), andc) since the event

(D(j:v—1) > d) N (Dj—1:m—1) < d) occeurs if exactlyj — 1 of Dy, D3, ..., Dy are less than or equal

to d and exactlyM — j of Dy, Ds, ..., Dy are bigger thanl.
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Fig. 5. Primary list order statistics of the relevant quenyaBI with M = 23° and L = 512 in channels with distortions.

In Fig. 5, we show the impact of channel distortions on thatjwssof the related entry in the primary
list of candidates (27) for a codebook bf = 23° of length L = 1024 fingerprints. The primary list size
N; was fixed to32, and the identification channel distortions were assuméx toriginated from th&SC
for the range o8NRs from 0dB to -12dB. One can observe the natural consequéatéy increasing
the channel degradation, the probability for the relatettyefalling into the first position decreases.
This behaviour also justifies why theLB decoding is able to return the correct index on the list for
the propersNR while the ML decoding, which always selects the candidate with the $arfijeelihood
function completely fails. Moreover, in the strong distoint case, the likelihood of a correct candidate
on the list is almost equal to the ones of other list membéhngs Makes the query almost equally likely
in relation to all elements on the list. Finally, the expotiencharacter of the analyzeRMF allows for
the determining of a reasonable list size that will guararitee desired value aFP; for human-centric
systems. In the casE,; is assumed to be equal90, the average cardinalities of; are 1, 16, and23°,
respectively, for 3 operational regimes specified in Fig. 5.

VIl. NUMERICAL EVALUATION
We validate the theoretical results by experiments usingtalihse of synthetically generated sequences

and a real database of images.

A. Numerical results using Synthetic Database

In this Section, we perform the analysis of theoretical ltsquresented in Sections V and VI based on
synthetic database. The goal of this analysis is twofoldhifirst part, we experimentally confirm our
theoretical findings about the decorrelation propertRifin the second part, we analyze the performance
of the identification system in terms @}; and P;. For this purpose, we generated three databases with
M = 1024 and lengthN = 4096 according to theAR(1) Gaussian process with = 0, p = 0.5 and
p = 0.75. The goal of the first experiment consists in the investayatf maximum residual correlation

in the projected datax using 100 realizations ofRP. According to the theoretical results (8a), it is
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Fig. 6. The decorrelation and approximate i.i.d. presemaproperties of thdRP. (a), (b) and (c) the maximum off-diagonal
elements of the covariance matrix of the projected déta and the binarized version of the projected dktg, b, , using 100
different realization of theRP, where the original datx is generated from th&R(1) Gaussian process with% = 1 and

p =0, p=0.5 andp = 0.75, respectively; (c) also shows the impactbf= 32 and L = 256.

expected that the residual correlation in the projected tanhegligible, which confirms the decorrelation
property of RP. As in the enroliment stage, we first apply tR® defined in Section V to reduce the
dimensionality of each item té = 32. Each element of the projected items is then quantized tdbdne
according to whether it is greater and equal or less than Eégo 6 shows the impact of the normalized
correlation coefficienp and dimensionality reductioh on the maximum value of off-diagonal elements
of Kzx and Ky, p, using 100 different realizations d&. Based on the simulation results shown in
Figs. 6, one can conclude that the elements of the randorofggied data, which are generated from
the AR(1) Gaussian process, are approximately uncorrelatedefdre, it is possible to assume that the
resulting coefficients follow approximately i.i.d Gaussidistribution, due to the linearity &®P and the
joint Gaussian distribution of the input. Moreover, it isgortant to point out the tightness of the bounds
obtained in (8a) and (8b). The obtained results show thabthands’ tightness is a decreasing function
of the correlation coefficient in the transform input. Theimargument justifying such a behaviour is
the use of Chernoff's bounding techniques to data obeyingsalual correlation. The development of

tighter bounds for £ > 0.75) is left for future research.

In the second part of our modelling, we experimentally \atlidthe identification system usirRpC
curves underAWGN distortions. Fig. 7 shows th€LB decoding performance analysis for this type
of degradation for the databases mentioned above. Thet taagge of operationadNRs is limited to
[5,15]dB, assuming that the channel noise is zero-mean white @Gausith variancer%. Based on these
experimental results, one can conclude that@h8 decoding performance under the proposed approach
of digital fingerprint extraction is approximately indeplemt of the correlation between elements of the

data in the observation domain.
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Fig. 8. Fingerprint extraction from images.
B. Numerical results using Image Database

In this subsection, we compare the performance predictetthdoyheoretical analysis with simulation
results obtained using an image database. The used datah2k [20] 3, consists of 1338 image of
size384 by 512. Fig. 8 illustrates a basic fingerprint extraction schemaeuranalysis based on 2DCT.
In this scheme, each image is converted to gray scale andedivn 16 by 16 blocks and the 2ODCT of
each block is computed. The feature vector is constructedolmgatenating th®CT coefficients at the
coordinateq 1, 2) inside each block. Finally, the binary fingerprint of lendth= 32 from each feature
vector is extracted by applyingP and binarization. The main reason to use such a fingerpriraction
scheme is justified according to the well-known decorretaproperties of DCT. In the case aR(1),
the DCT closely approximateKLT [16] and provides almost perfect energy compaction andrdeledion
of the transformed coefficients. However, the obtainedfaeits will have different statistics according
to the consideration of their covariance matrix, i.e.,etiint variances in the case of consides&1)-
model. Therefore, to satisfy the condition of stationarityge can select the coefficients that possess the

same statistics in each block of DCT. In the above scheme,ave just chosen the coefficient at the

3the same database was used in [4] for fingerprinting systditatian
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TABLE |

DATA STATISTICS IN DIFFERENT DOMAINS

Feature domair{ RP domain Binary domain
p maxig; KY  0g | maxiy Ki P
0.41 0.08 1.74 0.07 0.5

coordinate (1,2). Obviously, other choices are possibtevéVer, to keep a good trade-off between the

robustness and distinguishablity, the preferred coefftcdould be in the range of middle frequencies.
Table | summarizes the statistics of feature vectors etadairom the UCID images. TheR(1) model

parameter of feature vectopds estimated by using the well-known least square methodvatedWalker
equation [16], and by averaging over all images in the da®bAs shown in this table, the coefficients
obey a certain correlation with a normalized correlatioefficient p = 0.41. The correlation between
components of the projected feature vectors are almosigitdgland their marginal distribution approxi-
mately follows the Gaussian distribution. Finally, theraxted digital fingerprints followBernoulli(0.5).
This confirms to the main assumptions used in the theoretitallysis of fingerprint performance and also
demonstrates the ability of the fingerprinting system toegate an unique fingerprint for each image. We

evaluate the ability of the identification system to corseaentify an image after it has undergone the

potential malicious attacks listed in Table Il, whéP€NR = 10log;, 2522. We compare the predicted
Py, which is evaluated based on tAg®/GN model (10) witho—%{ and o—% estimated in theRP domain,
and the empirical’,, which is the average bit flipping in the binary domain. Ona canclude a good
match between the predicted and estimated crossover plitbalor all class of distortions except the
histogram equalization. Furthermore, in the histogranaéization attack, the predicted, using the GGD
model (11) withd; = 1.19 (Table II) equals td).11 that is quite close to the empiricah, = 0.1 (Table

II). The results imply that the assumption of the additivel #amdependent noise and the corresponding

results in theRP domain is approximately valid.

TABLE I
LIST OF ATTACKS TESTED AND THE CORRESPONDING NOISE STATISTEC
Attack|| Parameters Feature domain RP domain Binary domain
MAaX;#; KZZJZ 0z max Kzx |max;x; K;Ji 0; maxKszx|max;.; ngbz Py 15;, max Ky b,
PSNR=5 dB 0.03 2 0.03 0.08 2 0.09 0.08 0.20 0.21 0.09
PSNR = 10 dH 0.03 2 0.03 0.07 2 0.07 0.07 0.12 0.13 0.08
AVGN PSNR = 15 dH 0.03 2 0.03 0.08 2 0.08 0.08 0.07 0.08 0.09
PSNR = 20 dH 0.03 2 0.03 0.08 2 0.09 0.08 0.04 0.05 0.09
QF=1 0.04 1.2 0.09 0.1 193 01 0.1 0.10 0.11 0.09
JPEG QF =10 0.04 1.8 0.05 0.07 196 0.08 0.08 0.03 0.04 0.09
QF =25 0.03 1.95 0.06 0.06 1.99 0.09 0.07 0.01 0.01 0.09
Histeq 0.15 0.75 0.49 0.2 1.19 03 0.12 0.14 0.1 0.09
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Fig. 9. (), (b) and (c) the identification performance asialysingCLB decoding under the attacks listed in Table Il for a
database of binary fingerprints of dimensionality= 32 and cardinalityM = 1338 which are extracted from UCID images;

(d) the detector performance for different length of fingens.

To evaluate the performance of the identification setupgutie CLB decoding, the hypothesis testing
described in Section 1V is performed adg, and P; are evaluated. The obtained experimental and
theoretical results demonstrate an excellent match. Bas9b and 9c show thROC curves of theCLB
decoding performance over t#GN, JPEG compression and histogram equalization (Histegglet
respectively, with different primary list sizes. Althougfcreasing the primary list size can enhance the
performance in terms aF,, this improvement is restricted over the specific range whary list sizes if
low P; is acceptable. Moreover, Fig. 9b demonstrates the siroulatersus analytical results for JPEG
compression with the quality factor equals tousing (17) and (20) assuming, = 0.1 (Table II),

M = 1338, N; = 1 and N; = 4. Additionally, to validate the detection capabilities detconsidered
method, Fig. 9d shows the detector performance under aitghton setup defined in Remark 7 using
the advocated fingerprint extraction scheme under the dstiack forL = 16 and L = 32 in terms of

P,, and P;, where P; is estimated using 1000 pairs of randomly chosen originglefiprints.

VIIl. CONCLUSIONS
We analyzed the identification setup based ondhe decoding framework. In light of this framework,
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we have investigated theLB decoding performance by deriving closed-from analyticgdressions and
bounds for the probabilities of correct detection and falseeptance. The theoretical results are also
validated on synthetic data and a set of real images.

The simulation results show that, on the one hand,@b@ decoding can only improve the identifier
performance in lowsNR scenarios. On the other hand, this improvement is redirioyea certain range of
list sizes. The fingerprinting algorithm proposed in thisitext demonstrated an excellent performance
under the class of considered attacks that might even genecetent dependent noise. In fact, we
have shown that the assumption of independence is valid aaccan evaluate the performance of the

identification setup based on i.i.d. binary fingerprints.
Further improvement of the fingerprinting performance isigioned by optimizing the feature ex-

traction with respect to its robustness to malicious agaelspecially geometrical attacks that have not
been directly addressed in this paper. In this respect, sieeofi robust features looks very promising;
features such as SIFT and their combination with the bladedDCT considered in this manuscript.
One can also predict an essential improvement in the contylekan identification problem by using
the BDD proposed in [5]. The complexity of this identification teddure critically depends o, and the
fingerprint length. The achievable valuesif demonstrated in this paper, makes it feasible to perform a
search through a large-scale database even on computermadterate computational power. Moreover,
an additional reduction in complexity is possible with thee wf the bit reliability that was also considered
in [33]. In this respect, the theoretical framework develdjin the current paper should serve as a basis
for the theoretical analysis of soft fingerprinting systefisally, we plan to test the identification setup
on several databases of medical images and physical ufsdon@crostructure images to evaluate the
uniqueness of fingerprints and their performance in termR@¢ curves. It is also very important that
security and privacy analysis be included in the proposaadéwork under consideration, and that appears

to be our next research challenge.
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Pp- ‘APPENDIX A

PROOF OFPROPOSITION1

Proof: At first, we consider off-diagonal elements Kfz5 that can be expanded as follows:

% = Z Z werxijc [(wilel +- wz’ijN) +p (wile2 + wpwi + - + wz’ijN—l)
r=1 c=1 e v
ty Y’
4+ ...+ pN_l (wiwjn + winjl)] = 0'%( Z Pkt?- (28)
D k=0
tN_1

Due to symmetry of a covariance matrix, we just investiggipeu off-diagonal elements, i.el,< i <
j < L. In order to bound these elements, we evaluate an upper Houtite probability that the largest

upper off-diagonal elements & xx is greater tham3, <T> ¢, where( is a positive real value:
_ N (a) _ _ N
Pr{male | > 0% <1 p ><} < MP {‘KZJ’>O. <1 p )C}
1—p 2 1—p
= -/ — [ —= < — - — e
5 Pr{q%( <1—p >] \>C} < L(L —1)exp(—sC)E |exp Sag( Ty K.

N-1 N-1
© L(L —1)exp(—sC)E |exp (s /{kT,iJ) (%) L(L —1)exp(—s() [Z kiE [exp (sT,ij)]
k=0 k=0

N 1 Ni 1o N-1 N 52
Kk [exp )HE [exp ( V”ﬂ L—-1) Z Kk [exp(—s() Hexp (W)]
k=0 =1 . k=0 =1
N-1 2,2 i 2 N-1 2,2
@ L(L-1) kZ:O Kk [exp <—];[N<k >} =L(L-1) _moexp <—%> + ; Kk €Xp <—ﬁ>]
< L(L-1) [FLQ exp <—NTC2> + 5 Kl €XP (—%)] < L(L—1)exp (—NT@> . (29)
k=1
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wherery, = p" (f_‘p&) and Y0 ' kx = 1, (a) since there are onlgf@ such identically distributed
random variables [34]b) follows form the generalized Chernoff bound [31] fee> 0, (¢) holds from

(28), (d) holds due to the convexity afkp(-), (e) follows thatE [exp(sTlij)] is the moment generating
function of 7,7 that is the sum ofV; € {N,2(N — 1),...,2} iid. Bernoulli(3) random variables

Vi =W, W,. € {&, S}, (f) holds sinceV% is a bounded random variable [35], afg) holds by
choosings = & C . By substituting¢ = /2 In L and settingd = ( i ) \/ ¥ 1InL, (8a) is obtained.

For the dlagonal elements &z, we have:

N N
ji 2 2 2
K% =ox + Z ZwirKg{wic =0y + 20 p (Witwiz + - - + WiN_1WiN)
r=1c=1 ~
r#c di’
N-1
2 2 2 N—-1 2 2 k i
+ 20%p” (winwiz + -+ + WiN—2WiN) + ... + 20%p (wiwin) = oy +20% Z prdy,
g — k=1
d’ dy_,

Similar to (29), we evaluate an upper bound for the prohghitiat the maximum deviation of diagonal

elements ofKzx from 0% exceed0% ( = ) ¢, wheree > 0. This probability is given by:

y — N (a) ) — N
Pr {max|K§~(’,~< —o%| > 20% <p1 P > e} < LPr {|K§~Z,~( —o%| > 20% (Pl P > e}
i —p —p

© N-1
(:I))ZLexp(— exp( Z)\kD )] < 2L exp(—se [Z )\kE exp (sD )]]
k=1
(@ N=1 N22 Ne2
= e () o0 () )
k=1

where )\, = p* (pl_;p&) and fo;ﬁ A = 1, (a) follows from the fact that there are onfy such random
variables which are identically distributed [34}) follows form the generalized Chebyshev inequality
[31] for s > 0, (d) results from the convexity oéxp(-), and (e) holds following the same results of
parts (f) and (g) in (29) and by choosing = (N C) By substitutinge = \/% and setting

a= (1—1@”,;1) J/EpIn L, (8b) is obtained. m

APPENDIX B

PROOF OFCOROLLARY 1
Proof: This is a corollary of Proposition 1, whepe— 0. For the off-diagonal elements &f;;, we
can easily derive (9) by substituting= 0. For the diagonal elements,| p=0 = 0. Thus,Pr{max; K% —

o%| > 0} < lim, o (;) =0 for all L > 1, which implies thatvi, 1 <i < L, K% = o%. |
L\r
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APPENDIXC
PROOF OFPROPOSITION2
Proof. Conditioned on?, we defineEz, as the event that there exists a subset of indiCes

={2,..., M} with |Z;| = N; whose all log-normalized-likelihoods, .60, 1 < i < N, satisfies

)

Ly > L1 and L) > L. Pl can be bounded forany< s < 1 as follows:

7-[1} < Z Pr {Ezj

J=1

Pl =Pr{(mi ¢ N))N (L1 > ~L)|H,} = Pr U Ex,
j=1

C
Z ) > LiNLy>~L)N---N (ﬁj(Nz) >LyNLy >~L)|He}

(c)
0 CPr{Lps1 > LiNL > ’7L|'H1}NL < (M- 1)N1Pr{£m¢1 > ’7L|H1}NL

—
=

N,

(@) L nl|x(m)n
% {eLBe LR lexplul,,])} ' = {eLRe‘“'YL [IE [exp <u In p(y[p](|y[§1]))[ ])ﬂ }

n=0
Ly M ™
= el LR |ex ulnp(y|m) } = { el B~k () ()l_u (ylz)*
(e fo o (m 2 )] 3 )0t
AR
= LR%{EZEZp yxﬂsy} < {exp[~L(Eo(s,7) + 7~ R (31)
yey zeX

whereC' = (M]\gl), (a) follows from the union bound [13](b) follows from the fact that the events
are independent and,,,s, m # 1, are i.i.d. random variablesg) follows from the fact thaPr{L,,.; >

L1N Ly > YL H} < Pr{Lmpr > L1]Ly > yL, H1} < Pr{Lys1 > vL|H1} and inequlaity(*}; ") <
(M — 1)M, (d) follows from applying the Chernov bound [31] for afy< « < 1 and0 < s < 1. And,

E,(s,7) is defined as: o —mZ Zp y|33)1 557 (32)
yeY reX

Finally, sinces is arbitrary in (32), we get the tightest bound by choosingp maximize E,(s,~).

Therefore, we have P! < {exp[-L(E(y) +v— R}, (33)

where E(v) is defined in (23). Using the Chernov bourfgfl can be bounded for any1 < v < 0 as:

L-1
P =Pr{L) < vLIH1} < e ""Elexp(vLy)] = e F H E [exp <1/ In Iw>]

0 [y[n]]
L-1 o L
:e_V'YLHZp Zp y|x @) {Z Zp y|3:)1 ses*y}
n=0zeX yey yeY zeX
= exp|~LE,(s,7)] < exp[-~LE()] (34)
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where (a) follows from lettings =1 — v, 0 < s < 1. Combining (33) and (34), we obtain (22a). m
APPENDIXD

PROOF OFCOROLLARY 2

Proof: Using (32) one can see thai,(0,v) = 0, and it can be easily verified th&% =
s=0

—v+ C. Therefore, since foty < C, E,(s,~) is a non-decreasing function ef then for any0 < s < 1,
E,(s,7) > 0 implying E(y) > 0. Moreover, asy — C, aEg(j’”) |, — 0 leading to E(y) — 0. [
APPENDIXE

PROOF OFCOROLLARY 3
Proof: For inputsp(0) = p(1) = 1, the output probability will be given by(0) = p(1) = 3. Then,
Eo(s,y) =sln2—sy—In[(1 - B)"*+ P ~*]. (35)
By setting the derivative of/,(s,~y) respective tos, equal to zero. We have
y=I2+nlnP,+ (1 —-n)n(l - B), (36)

L -, was defined in (15). By substitutingin (35), we get

wheren = s —my—

E=DlF). 37)

Finally, substituting (36) and (37) in (23), we obtain (248)e equations are only valid fdf, < n < %
APPENDIXF ]

PROOF OFPROPOSITION3
Proof: Conditioned orty, we defineE,,, 1 < m < M, as the event that there exisiéf(m) whose

L, > ~vL. The probability of false acceptance for aly< s < 1 can be bounded as follows:

Py =Pr U Em"Ho < Z Pr {Em"}-lo} = Z Pr{L,, > vL|Ho} < Me ' E[exp[ul,,]]
m=1

j=m m=1
L-1 L-1
_ e—u'yL ex u np(y[n]]w(m)[n]) — e—U'yL T 1—u )Y
=M EOE[ p< ) )} M L[Og;p( )yze;p(y) p(ylz)
L
—ME LSS p(@)ply) plyle) ey (38)
yeY zeX

where(a) follows from the union bound, an@) holds since the events are i.i.d. and using the Chernov
bound for anyd < s < 1 and0 < v < 1. Finally substitutingl/ = e in (38), we obtain (25). |
APPENDIX G
PROOF OFCOROLLARY 4
Proof: Similarly to the proof of Proposition 3, by substituting= In2+n1n P, + (1 —7) In(1 — B,)
and E = D(n||Py) in (25), (26) is obtained. [ |
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