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Abstract

This paper is dedicated to the performance analysis of content-based identification using binary

fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple

hypothesis test and develop analytical models of its performance in terms of probabilities of correct

detection/miss and false acceptance for a class of statistical models, which captures the correlation

between elements of either the content or its extracted features. Furthermore, in order to determine the

block/codeword length impact on the identification’s accuracy, we analyse exponents of these probabilities

of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on

list decoding by evaluating the position of the queried entry on the output list. The obtained results

make it possible to characterize the performance of traditional unique decoding, based on the maximum

likelihood for the situations when the decoder fails to produce the correct index. This paper also contains

experimental results that confirm theoretical findings.

Index Terms

Content-based identification, digital fingerprint, constrained list-based decoding, order statistics, miss

error exponent, false acceptance error exponent.

I. INTRODUCTION

In today’s world, digital reproduction tools and user generated content (UGC) websites, such as

Youtube, which enable massive distribution, sharing and storage of multimedia contents, have undergone

an impressive evolution, providing professional solutions to various groups of users. Besides these obvious
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advantages, these tools offer, at the same time, unprecedented possibilities for counterfeiters to virtually

reproduce any physical or digital items, i.e., images, videos, audiofiles, documents in electronic or

printed form, fake biometrics or any luxury goods or art objects. Thus, the issue of integrity in content

identification becomes a critical one demanding an urgent solution for various applications.

The content based identification (CBI) problem can be considered as a multiple hypothesis testing

problem based on the Neyman–Pearson criterion [3], [4], [5], while the cost for making the wrong decision

should be adjusted for each particular application. Since mostCBI systems deal with critical and sensitive

decisions in security applications, such as biometrics, content identification for copyright protection and

illegal copy detection, etc., this cost is relatively high.No less important are the consequences of the

wrong identification of physical objects such as over-terminated or fake medications, objects of art or

luxury goods [6]. Therefore, under these conditions, theidentification problemis defined as the multiple

hypothesis test withM + 1–alternatives, whereM is the number of contents to be identified and the

additional hypothesis stands for the erasure, if no match can be found. The performance of theCBI

system is characterized by the probability of miss, i.e., when the genuine content is wrongly rejected,

and the probability of false acceptance, when the faked or content-independent entry is falsely accepted

as one ofM genuine contents. In each considered application, both probabilities should be very small,

which makes it similar to the classical digital communication setup.

On the other hand, theCBI systems are facing numerous additional requirements related to such issues

as identification complexity, privacy, security as well as memory storage [5]. The trade-off between these

requirements is a quite complex problem that still remains unsolved. To address this trade–offdigital

fingerprints are used [7], [8]. A digital fingerprint represents a short, robust and distinctive content

description. The main idea behind digital fingerprinting consists in the extraction of a lower dimensional

content representation that is usually accomplished as follows [6], [7], [8]. First a lower dimensional data

representation from a content or its extracted feature is obtained (dimensionality reduction). Secondly,

to address complexity, security, privacy and memory storage requirements, the transformed data are

converted to a binary format. At the identification stage, either binary (hard decoding) or real valued

query (soft decoding) can be used [5].

One key factor that restricts the progress in this directionis related to the analysis of theCBI system

performance. This in turn requires to introduce tractable analytical models forCBI. Moreover, in many

applications, data can be severely distorted and the classical unique decoding might not be capable

of reasonably handling noisy inputs, thus resulting in a high rate of erroroneus decisions. However, it

is known in digital communication that replacement of the unique decoding decision rule by the list
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decoding with variable [9] or fixed [10] list size might help in such a situation. The reason for this

enhancement is due to the fact that content degradation might change the order of the likelihood of

the correct content. Since most of the identification techniques using unique decoding are based on the

maximum likelihood (ML ) principle, the change of the order of the correct likelihood will incur an error.

However, this change might only cause the flip of the correct likelihood position to the nearest positions in

its sorted list. Consequently, providing the list of most probable likelihoods of candidates might resolve

the problem as soon as the correct candidate is on the list. Such a situation is mostly acceptable for

the above-mentioned multimedia security, biometrics and physical object security applications, where

the final decision is made by human means. Obviously, the change of decoding rule from ‘unique’ to

‘list’ decoding should be considered along with the relaxation of a constraint on the probability of false

acceptance. Nevertheless, the potential help of list decoding in theCBI systems is little investigated and

remains largely undiscovered with a few exceptions [1], [2], [11]. Therefore, an investigation of the

impact of list decoding in theCBI applications is of great theoretical interest and practical importance.

In this paper, we analyze theCBI for still images.

II. STATE-OF-THE-ART

One of the first attempts to establish the theoretical limitsof theCBI systems in biometrics applications

was performed by Willems et al. [12]. The authors demonstrated that by using unique decoding under

the assumption of an infinite length of sequences, one can attain the upper achievable rate given by

the mutual information between outputs of the enrollment and identification channels in the class of

discrete memoryless channels (DMC)s. This result was derived using the concept of typicality [13].

The false acceptance event was not considered in [12], due tothe fact that the probability of two

independent sequences being jointly typical is asymptotically vanishing. However, the obtained result

can not be directly applied to the correlated contents as that would violate the principle of independence

in the concept of typicality. To address this problem, as well as to relax the typicality constraint on the

infinite length of sequences, Varna et al. [4] considered theCBI problem based on theML criterion

with the fidelity constraint for the images possessing localcorrelations and finite length fingerprint

representations. The preservation of correlation in the binary data representation unavoidably leads to

a decrease in entropy of fingerprints and thus to a decrease inidentification rate as well as privacy

leakage. Moreover, distortions should be also treated withspecial care due to their dependence upon

original data. These factors considerably impact the accuracy of the conveyed analysis that is performed

under certain assumptions. Independently, Voloshynovskiy et al. [5] and Willems [14] considered theCBI
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for the independent and identically distributed (i.i.d.) binary data with finite length based on a bounded

distance decoder (BDD) that can operate in erasure or list decoding modes similarly to [9]. However, the

main focus of the above mentioned papers was on the analysis of unique decoding under privacy and

complexity constraints for finite length sequences. Thus, the impact of real data statistics still remains

uncovered.

Therefore, targeting an accurate performance analysis of the CBI systems, we will consider the per-

formance of theCBI based on digital fingerprints taking into account the statistics of real images.

Our analysis is accomplished in several stages. First, in order to guarantee the optimal discriminative

power of binary fingerprints, one should maximize the entropy of the fingerprinting output that requires

independence between fingerprint bits. Usually, such a property is satisfied by the proper selection of a

linear mapper that is followed by binarization. Selection of such a mapper plays a crucial role at this

stage due to the following argument: if the input to binarization procedure is a vector with uncorrelated

components, the output is composed of pairwise independentbits [15]. Moreover, if this input has the

jointly Gaussian distribution, the elements of the output are mutually independent. The mapper that

possesses such properties is the Karhunen-Loève transform (KLT ) [16] that optimally decorrelates its

input for a given covariance matrix as well as optimally compacts its energy into a few components,

making dimensionality reduction a straightforward process. However, the price that must be paid for this

optimality is its data dependence and the necessity of updating the transform matrix for new entries.

The latter issue gains importance due to the high computational complexity of this transform that can

be evaluated asO(N3), whereN is the dimension of its input [17]. Additionally, the estimation of

covariance matrices for large databases can be prohibitively expensive. Besides the drawbacks indicated

above, the public disclosure of the basis vectors for a givenclass of data models makes this transform

undesirable in the secure identification applications.

In order to ameliorate the issue of complexity, several approximations of theKLT were proposed. These

include, for example, the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) [16],

which demonstrate a nearly optimal decorrelation of locally correlated data. The basis vectors of these

transforms are fixed and independent of the statistics of their inputs. Due to their decorrelation and energy

compaction capabilities, as well as the existence of fast implementation algorithms, they are used as a

common tool in various signal and image processing applications. However, the main drawback of such

fixed basis transforms consists in the public disclosure of the basis vectors, which is rarely acceptable

for multimedia security applications [5].

One possible solution to this privacy/security shortcoming is a mapper that can be designed, based
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on random projections (RP) [7]. The RP have been the object of much interest due to the fact that

they are capable of providing an approximate distance preservation, something also recently recognized

in the Compressed Sensing community for sparse data [18], [19]. While the decorrelation property of

orthogonal transforms is well-known [16], theRPare based on approximately orthogonal bases. Therefore,

the statistics of the projected data, i.e., the covariance matrix, are not well justified. On the other hand,

prior knowledge of the statistics of the extracted digital fingerprints is crucial for the evaluation of the

performance of theCBI systems. It is also interesting to explore the possibility of combining theDCT

with the RP to benefit from both energy compaction and decorrelation, aswell as security.

As mentioned above, the other important issue of theCBI systems is their ability to deal with highly

distorted data. As a possible solution, one can envision theuse of Forney’s [9] list decoding approach

as mentioned in [5]. However, in many identification applications, the final sink of information will be a

human being. This constraint makes this type of list decoding undesirable, due to the high variability of the

list size. Another solution, which is proposed by the authors in [1], is theConstrained List-Based(CLB)

decoding approach. In theCLB decoding, which is a combination of Elias [10] and Forney’s list decoding

techniques in information transmission and coding applications, a limited number of candidates with the

largest likelihood functions that can satisfy a specific threshold is selected. The analysis accomplished in

[1] is based on the assumption that the contents are generated independently and identically. Thus, one

of the main goals of this paper consists in the extension of this analysis to a broader class of statistical

models with correlation. Moreover, one is often interestedin choosing system parameters, i.e., the length

of digital fingerprints, the decision threshold and the maximum number of candidates, to ensure that

the probabilities of miss and false acceptance are below certain bounds. Hence, in this paper, besides

computing the exact probabilities of correct detection andfalse acceptance, we derive bounds on the

probabilities of miss, the complement of the probability ofcorrect detection, and false acceptance for the

digital fingerprints of a given length. Further yet, to show the impact of the list decoding, we investigate

the probability that the correct entry of a database might fall in some position of the list, depending on

the level of query degradation.

A. Contribution to the state-of-the-art

The main contribution of this paper can be summarized as follows: we analyze an identification setup

based on binary i.i.d. fingerprints. In this identification setup, we exploit theCLB decoding in the binarized

projected domain for either contents or their extracted features that can be modelled by a correlation-based

model like a first order autoregressive (AR(1)) process, which captures correlation between elementsof

data [16]. Then, we investigate the fundamental performance limits in this setup by analysing probabilities
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of errors and establishing the error exponent bounds as wellas deriving achievable identification rates.

Finally, we consider order statistics of the correct entry appearance on the list in order to justify the

optimal list size for various operational modes. These results extend and deepen our preliminary findings

[1] and [2] in regard to the analysis of theCBI based on theCLB as well as the previously considered

contribution of [12].

To the best of our knowledge, the only work dealing with list decoding in the content fingerprinting

applications is [11]. The closest relevant work addressingthe theoretical analysis of correlated contents

and binary fingerprints under the unique decoding is [4]. Theprincipal differences with these papers can

be summarised as follows:

• the CLB decoding proposed in this paper differs from the one analysed in [11] in two ways:1

– the type of list decoding: the list decoder proposed in [11] produces the variable list size based

on thresholding of likelihood functions computed for all items while the list decoder considered

in this paper always outputs the list of candidates that doesnot exceed the predefined list size.

The list decoding analysed in [11] represents better performance in terms of probability of miss

in exchange for the unbounded list size that is not always desirable in those applications where

the final sink is a human being;

– prior knowledge about channel statistics: the decoder considered in [11] is based on some

generic distance, which can be matched with the channel statistics, while theCLB considered

in this paper is based on the Hamming distance deduced for thebinary fingerprints.

• contrarily to [4], we consider a decorrelation approach based on theRP which makes it possible

to generate binary fingerprints with asymptotically independent and equal likely distributed bits;

this property could be of advantage for the maximization of the achievable rate of binary fingerprint

identification, efficient fingerprint storage, privacy-preserving as well as extension of unique decoding

to more general list decoding rules2.

The main extension of the results earlier published by the authors [1], [2] consists in:

• in [1], [2] we have assumed that the contents to be identified can be modeled as an i.i.d. Gaussian

process. Moreover, the impact ofRP which are approximate ortho-projectors was not considered. In

1It should be pointed out that due to the different decoding strategies, i.e., constrained list size in theCLB case and variable

list size in [11], the performance measure in terms of probability of miss is different and that makes a direct comparison

unfeasible.

2In some applications, the extra correlation between fingerprint bits is favoured to strengthen the method with geometrical

transforms or to avoid computational complexity of decorrelation in large-scale applications.
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this manuscript, we extend this assumption from an i.i.d. process to an AR(1) Gaussian process and

we analyze the impact ofRP on the statistics of the projected data by deriving upper bounds;

• the performance analysis of identification systems proposed in [1] and [2] was based only on exact

formulae of probabilities of miss and false acceptance, where the distortion channel was assumed

to be aBSC. In this manuscript, we derived upper bounds on the probabilities of miss and false

acceptance for a more generalDMC distortion model;

• the numerical evaluations in [1] and [2] were based on synthetic data generated by an i.i.d. Gaussian

process, however, in this context we extend our validation to simulations using a real image database,

Uncompressed Colour Image Database (UCID) [20].

The outline of this paper is as follows. In Section III, we introduce notations and definitions exploited

through this paper. Section IV defines the structure of the identification setup. In Section V, we consider

the statistics of data used in the identification setup and demonstrate decorrelation and independence

preserving properties ofRP. Section VI elaborates the fundamental limits of the introduced identification

setup. Finally, the conclusions are presented in Section VIII.

III. N OTATIONS, DEFINITIONS AND PRELIMINARIES

A. General notations

Throughout this paper, we adopt the convention that a scalarrandom variable is denoted by a capital

letterX, a specific value it may take is denoted by the lower case letter x, and its alphabet is designated

by the script letterX . As for vectors, a boldface capital letterXN with a corresponding superscript

will denote anN -dimensional random vectorXN = {X[i]}Ni=1, a boldface lower case letterxN will

represent its particular realizationxN = {x[i]}Ni=1, and the respective superalphabet is theN th Cartesian

power ofX , i.e., XN . xN†

stands for the transpose ofxN . The expectation operator is designated by

E[·]. We useH2(·) to denote the entropy of a binary random variable.N (µ, σ2
X) stands for the Gaussian

distribution with meanµ and varianceσ2
X . Q(·) designates the Q-function.B(N, p) denotes the Binomial

distribution with N trails and probability of successp. The Kullback-Leibler divergence between two

distributionsp(x) andq(x) onX is defined as,D(p(x)‖q(x)) =
∑

x∈X p(x) ln p(x)
q(x) , with the conventions

that 0 ln 0 = 0, andp ln p
0 = ∞ if p > 0.

B. Order statistics

Let V1, V2, . . . , VM beM i.i.d. random variables, each with a cumulative distribution function (CDF)

F (v). Ther-th order statistic of theseM i.i.d. random variables is denoted byV(r:M), which corresponds
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ϕ(·)
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xN(2)
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fingerprint
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Fig. 1. The identification setup forCBI based on binary fingerprints.

to ther-th position ofv(1:M) ≤ v(2:M) ≤ . . . ≤ v(r:M) ≤ . . . ≤ v(M :M) for a specific outcome.F(r:M)(v),

the CDF of V(r:M), is given by [21]:

F(r:M)(v)=Pr
{
V(r:M) ≤ v

}
= Pr {at leastr of Vi are less than or equal tov}

=

M∑

i=r

(
M

i

)

F i(v)[1 − F (v)]M−i, (1)

since the term in the summand is the binomial probability that exactlyi of V1, V2, . . . , VM are less than

or equal tov.

C. Random Projections

In RP, the originalN -dimensional data are projected to anL-dimensional (L ≤ N ) subspace, by a

linear mapperwL×N drawn from a specified probability distribution. We furtherusew rather thanwL×N

for convenience. The key idea behind the dimensionality reduction usingRP is based on the Johnson-

Lindenstrauss lemma [18]: if points in a vector space are projected onto a randomly selected subspace of

suitably high dimension, then the distances between the points are approximately preserved. The choice

of the random matrixW is very important for satisfying the conditions of this lemma. The elementsWij

of W are often Gaussian distributed, but Achlioptas [22] has shown that the Gaussian distribution can

be replaced by a much simpler Bernoulli distributionPr{Wij = ± 1√
N
} = 1

2 . We also consider theRP

based on the above Bernoulli distribution due to the simplicity of statistical analysis of projected data.

IV. T HE IDENTIFICATION SETUP

The identification setup under analysis shown in Fig. IV consists of two main phases:content enrollment

andcontent identification.
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In the content enrollment phase, the digital fingerprints are extracted from either contents or their

extracted features and stored in aDatabase. The Database is a collection ofM labelled binary vectors

denoted by:
bL
x(m) ∈ {0, 1}L,m ∈ {1, . . . ,M},

wherebL
x(m) = ϕ(xN (m)) is a digital fingerprint extracted from either the content orits extracted feature

xN (m) ∈ XN , which is drawn from a common stationary distributionp(xN ). ϕ(·) is a digital fingerprint

extraction function that can be key-dependent. Conversionto binary in the fingerprint extraction is applied

so as to cope with storage, privacy, security and complexityconstraints. However, since the use of the

secret key does not impact statistical analysis of the setupdue to its symmetrical presence at enrollment

and identification stages, we consider only a key-independent digital fingerprint generation in this paper.

In the content identification phase, for a given queryyN the digital fingerprint is extracted similar to

the enrollment phase, i.e.,bL
y = ϕ(yN ). Then, the decoder decides whether the query is relevant to some

entries of the Database, and if so, decides to which ones. Otherwise, it produces an erasure.

A. Identification Problem as a Decoding Problem

In the case the query digital fingerprintbL
y is related to some elementbL

x(m) of the Database, this

relationship can be modeled as a binary channel with the transition probability p(bL
y |b

L
x(m)). If the

query digital fingerprintbL
y is unrelated to any entry of the Database, we assume thatbL

y is drawn from

p(bL
y) =

∑

bL
x
∈{0,1}L p(bL

x)p(b
L
y |b

L
x). Therefore, we can define the content identification problemas a

statistical test withM + 1 hypotheses:




H0 : BL
y ∼ p(bL

y)

Hm : BL
y ∼ p(bL

y |b
L
x(m)),

(2)

whereH0 andHm correspond to the cases thatbL
y is unrelated to any entry of the Database, andbL

y is

related to themth entry of the Database, respectively.

B. Constrained List Based Decoder

We define theCLB decoding as follows:

1) For each entrybL
x(m), 1 ≤ m ≤ M , of the Database, the decoder computes log-normalized-

likelihoodsLm = ln
p(bL

y
|bL

x
(m))

p(bL
y
) .

2) The computed log-normalized-likelihoods are sorted in ascending order.

3) TheNl indices with the largest log-normalized-likelihood functions are chosen. Then, their indices

are put in the primary listNl one-by-one, i.e., the first index inNl corresponds to the largest one

and so forth. ParameterNl is referred to as the primary list size.
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4) The final list of candidates is defined as:

N ′
l = {m ∈ Nl : Lm ≥ γL}, (3)

whereγ controls the number of final candidates and defines the rejection option.

The performance metrics of theCBI are defined by the probability of correct detection,Pd:

Pd = 1− Pm =

M∑

m=1

Pr{(m ∈ Nl) ∩ (Lm ≥ γL)|Hm}Pr{Hm}, (4)

wherePm denotes the probability of miss, and the probability of false acceptance:

Pf = Pr{N ′
l 6= ∅|H0}. (5)

V. THE STATISTICAL ANALYSIS OF DIGITAL FINGERPRINT EXTRACTION

The digital fingerprint extraction functionϕ(·) works as follows:

1) The dimensionality of a content or its extracted featurexN (m) and a queryyN is reduced from

N to L by applying theRP operator,wL×N [6]. Note thatRP are approximatelyorthoprojectors,

i.e., ww† ≈ IL, wherew ∈ 1√
N
{±1}L×N with the probability mass function (PMF) Pr{Wij =

± 1√
N
} = 1

2 , 1 ≤ i ≤ L and1 ≤ j ≤ N . For a givenw, the projections̃xL(m) andỹL are obtained

by x̃L(m) = wxN(m) and ỹL = wyN .

2) L-length binary digital fingerprints,bL
y andbL

x(m), are derived by taking the sign of the projected

data, i.e.,bL
x(m) = {sign(x̃[i](m))}Li=1 andbL

y = {sign(ỹ[i])}Li=1, sign(a) = 1, if a > 0, and0,

otherwise.

A. The Statistics of Digital Fingerprints Extracted from Correlated Data

In this Section, we investigate the statistics of digital fingerprints obtained by theRP. We assume the

input XN can be modelled as anAR(1) Gaussian process. The justification of the use of this model is

two-fold. First,XN can be considered as an image that is characterized by local correlations between

neighbouring pixels. To capture these correlations, a number of statistical models such as autoregressive

and Markov random field are proposed [16]. TheAR(1) Gaussian process is considered as one comprised

of simple yet powerful models that accurately represent thelocal correlations present in imagesXN

[16]. Secondly, in the caseXN represents some robust features extracted from an originalcontent to

cope with potential malicious attacks, such an assumption that might yet be valid. For example, SIFT

[23], SURF [24] or Fourier-Mellin [25] transform used for image description includes a certain level of

correlation among samples of extracted features that can bemodelled as anAR(1) model. Finally, many

fingerprinting algorithms operates in decorrelation domains such asDCT or DWT [26], where the residual
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correlation among components of transformation coefficients can be modelled asAR(1) [27] . Assuming

this model, the covariance matrix in the projected domain isgiven by:

Kx̃x̃ = E[wXNXN†

w†] = wKxxw
†, (6)

whereKxx is defined by [16]:

Kxx = σ2
X











1 ρ . . . ρN−1

ρ 1 . . . ρN−2

...
...

. . .
...

ρN−1 ρN−2 . . . 1











, (7)

whereσ2
X and0 ≤ ρ < 1 are variance and the normalized correlation coefficient, respectively. We use

the following Proposition for statistical modeling of projected data.

Proposition 1. Let the elements of theRP matrix,w of sizeL×N and1 < L ≤ N , be drawn fromPMF

Pr{Wij = ± 1√
N
} = 1

2 , andXN be a real zero-mean random vector modelled as theAR(1) Gaussian

process with varianceσ2
X and normalized correlation coefficientρ. Then, we have:

Pr

{

max
i 6=j

|Kij
x̃x̃| > βσ2

X

}

<
1

L
, (8a)

Pr
{

max
i

|Kii
x̃x̃ − σ2

X | > ασ2
X

}

<
2

L

(

1

ρ

) , (8b)

whereKij
x̃x̃ denotes the(i, j)th element ofKx̃x̃, β =

(
1−ρN

1−ρ

)√
12
N lnL, andα =

(
1−ρN−1

1−ρ

)√
8
N ρ lnL.

Proof: Appendix A.

Remark 1. For a sufficiently largeN andL, L ≤ N , α → 0 andβ → 0, Kx̃x̃ asymptotically converges

to σ2
XIL with high probability. Moreover, from the fact that the source is theAR(1) Gaussian process,

which implies thatXN is jointly Gaussian, andRP is a linear transform, the projected datax̃L follow the

jointly Gaussian distribution, i.e.,̃XL ∼ N (0,Kx̃x̃). Therefore, since elements ofX̃L are asymptotically

uncorrelated,Kx̃x̃ ≈ σ2
XIL, one can conclude that̃XL are asymptotically i.i.d. In addition, the elements

of the digital fingerprint extracted from̃XL asymptotically consist ofL i.i.d. Bernoulli(12 ) bits due to

symmetry of the Gaussian distribution function.

Remark 2. In this casew is chosen to consist of the eigenvectors ofKxx, i.e., in theKLT , one will

obtain the decorrelatedKx̃x̃ with the ordered main diagonal elementsK11
x̃x̃ ≥ K22

x̃x̃ ≥ . . . ≥ KNN
x̃x̃ [16].

The difference with theRP consists in perfect decorrelation versus the asymptotic one in (8a) and the

power–law decaying character of main diagonal elements versus approximately uniform ones in (8b) [16].

June 21, 2012 DRAFT



12

B. The Statistics of Digital Fingerprint Extracted from Query

The queryyN under the true hypothesis represents the distorted versionof xN that might undergo

various distortions ranging from the simple addition of signal independent noise to signal dependent

distortions such as lossy compression or even geometrical transforms. The statistical modelling of these

distortions is quite a challenging task by itself. However to withstand geometrical transforms, many

fingerprinting algorithms use robust features. In this case, the matching of geometrically distorted images

is based on the matching of robust features based on Euclidean distance [28] where the effect of

geometrical distortions is converted into the independentadditive noise [29]. In the general case, one can

assume that the resulting noise comes from the broad family of i.i.d. Generalized Gaussian distributions

(GGD) with the shape parameter less than or equal to 2. The distribution parameters will impact the

statistics of query fingerprint and its mismatch with the fingerprint of the original content. As will be

shown below, the Gaussian distribution, that is a particular case of the GGD with the shape parameter

equals to 2, produces the largest mismatch in terms of Hamming distance due to the highest cross-over

probability among all GGDs with the bounded variance. Therefore, our analysis will be concentrated on

the consideration of the worst case crossover probability provided by the Gaussian noise. Consider the

queryyN to be a noisy version of a piece of content or its extracted feature that can be modeled as the

AR(1) Gaussian process and is observed through an Additive White Gaussian Noise (AWGN) channel,

YN = XN + ZN , whereZN ∼ N (0, σ2
ZIN ) andσ2

Z is the variance of the noise. At the output of the

first step of digital fingerprinting, we havẽYL = X̃L+ Z̃L. From Proposition 1, we can assume thatX̃L,

asymptotically follows the distributionN (0, σ2
XIL). To justify the statistics of̃ZL, we have the following

corollary of Proposition 1.

Corollary 1. Let the elements of theRPmatrix,w, be generated as in Proposition 1, andZN is drawn i.i.d.

from a common stationary distribution with varianceσ2
Z . Then, the diagonal elements of the covariance

matrix of the projected noisẽZL = wZN are equal toσ2
Z , i.e., ∀i,Kii

z̃z̃ = σ2
Z , and all off-diagonal

elements ofKz̃z̃ satisfy:

Pr

{

max
i 6=j

|Kij
z̃z̃| > δσ2

Z

}

<
1

L
, (9)

whereδ =
√

12
N lnL.

Proof: Appendix B.

Remark 3. For a sufficiently largeN andL,L ≤ N , δ → 0, Kz̃z̃ asymptotically converges toσ2
ZIL with

high probability. SinceZN is i.i.d. Gaussian andRP is a linear transform,̃ZL is jointly Gaussian whose

elements are asymptotically uncorrelated, i.e.,Z̃L ∼ N (0,Kz̃z̃),Kz̃z̃ ≈ σ2
ZIL, thus Z̃L asymptotically
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follows i.i.d. Gaussian distribution. Consequently, the transformed channel is asymptotically a discrete

memoryless channel, i.e.,p(bL
y |b

L
x) =

∏L
i=1 p(by[i]|bx[i]).

Remark 4. The obtained results are also applicable to the noise modeled as theAR(1) Gaussian process.

Remark 5. From Proposition 1 and Corollary 1,̃YL is a sum of two independent random vectors

X̃L and Z̃L, whereX̃L ∼ N (0,Kx̃x̃),Kx̃x̃ ≈ σ2
XIL and Z̃L ∼ N (0,Kz̃z̃),Kz̃z̃ ≈ σ2

ZIL. Therefore,

ỸL ∼ N (0,K
ỸỸ

), whereK
ỸỸ

≈ (σ2
X + σ2

Z)IL, is a jointly Gaussian distributed random vector with

asymptotically uncorrelated elements, which implies their convergent independence. Moreover, one can

conclude thatBL
y consists ofL bits that are asymptotically i.i.d.Bernoulli(12) due to symmetry of the zero

mean Gaussian distribution. Conditioned onHm, the relation betweenbL
x(m) andbL

y can be modeled

by the Binary Symmetric Channel (BSC) with crossover probability [5]:

Pb =
1

π
arccos

(√

σ2
X

σ2
X + σ2

Z

)

. (10)

To demonstrate that the i.i.d. Gaussian noise indeed represents the worst case in terms of resultantPb,

we consider the projected datãXL ∼ N (0, σ2
XIL) corrupted by additive noise that follows i.i.d. GGD,

resulting in observatioñYL = X̃L + Z̃L.

The crossover probability in this case is defined as:

Pb = Pr[sign(X̃) 6= sign(Ỹ )] = Pr[Ỹ ≥ 0|X̃ ≤ 0]Pr[X̃ ≤ 0] + Pr[Ỹ ≤ 0|X̃ ≥ 0]Pr[X̃ ≥ 0]

(a)
= Pr[Z̃ ≥ x̃|X̃ ≥ 0] =

∫ ∞

0

∫ ∞

x̃

θ

2ωΓ(1/θ)
exp

(

−
|t− µ|θ

ω

)
2

√

2πσ2
X

exp

(

−
x2

2σ2
X

)

dtdx̃ (11)

whereµ = 0, θ is the shape parameter,ω2 = σ2
Z
Γ(1/θ)
Γ(3/θ) , Γ(x) =

∫∞
0 e−ttx−1dt is the Gamma function,

and (a) follows from the fact that̃X andZ̃ have symmetric distributions. Besides the Gaussian mentioned

above, and Laplacian, which is a particular case of GGD withθ = 1, where thePb can be computed

analytically:

Pb = exp

(
σ2
X

σ2
Z

)

Q

(√

2
σ2
X

σ2
Z

)

, (12)

it is difficult to find closed form expressions forPb for all other values ofθ ≤ 2. For the comparison

reasons, we numerically computePb for several values of the shape parameters, shown in Fig. 2. As

expected, the GaussianPDF (θ = 2) is characterized by the highest crossover probability andit will be

used in all future considerations.

Under these conditions, the corresponding hypotheses (2) become:






H0 : BL
y ∼ 1

2L ,

Hm : BL
y ∼ P dm

b (1− Pb)
L−dm .

(13)

June 21, 2012 DRAFT



14

−30 −20 −10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SNR(dB)

P
b

 

 

θ = 0.5 (Numerical)
θ = 1 (Numerial)
θ = 1 (Analytical)
θ = 1.5 (Numerical)
θ = 2 (Numerical)
θ = 2 (Analytical)

Fig. 2. The crossover probability computed for different GGD shape parameters.

wheredm , dH(bL
y ,b

L
x(m)) is the Hamming distance betweenbL

y andbL
x(m) that was also considered

in [30].

VI. T HEORETICAL PERFORMANCEANALYSIS OF THE IDENTIFICATION SETUP

In this section, we analyze the performance of the identification setup based onPd andPf defined in

Section IV.

A. Probability of Correct Detection

In this subsection, we evaluate the probability of correct detectionPd. From Remark 5, the log-

normalized likelihoodLm conditioned onHm is given by:

Lm = ln
P dm

b (1− Pb)
L−dm

(
1
2

)L
. (14)

The log-normalized-likelihood is a decreasing function ofdm for Pb ∈ [0, 0.5), where the Hamming

distancedm is a realization of the random variableDm, which can be considered as a sufficient statistic

in the analyzed setup to evaluate the probability of correctdetection. According to Remark 1 all entries

of the Database are considered to be i.i.d., moreover, we assume that all entries can be queried equally

likely, i.e., Pr{Hm} = 1
M . Therefore, the overall probability of correct detection does not depend on the

particular indexm. And, the analysis is accomplished only for the first indexm1:

Pd = Pr{(m1 ∈ Nl) ∩ (L1 ≥ γL)|H1}
(a)
= Pr{(L(M−Nl:M−1) < L1) ∩ (L1 ≥ γL)|H1}

(b)
= Pr{(D(Nl:M−1) > D1) ∩ (D1 ≤ ηL)|H1} =

ηL
∑

d=0

Pr{D(Nl:M−1) > d|H1,D1 = d}pD1
(d), (15)

where pD1
(d) denotes thePMF of D1, η = γ−ln 2−ln(1−Pb)

ln(Pb/(1−Pb))
is obtained from the replacement of the

conditionLm ≥ γL by D1 ≤ ηL, (a) follows from the fact that the first eventm1 ∈ Nl occurs if and

only if L1 is among theNl largest of{L1,L2, . . . ,Lm}, which is equivalent to(L(M−Nl:M−1) < L1),

(b) holds because the log-normalized likelihood is a decreasing function of the Hamming distance.
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By using Remarks 1 and 5, conditioned onH1, the sufficient statistics mentioned above have the

following distributions for1 ≤ m ≤ M :

Dm ∼







B(L,Pb),for m = 1,

B(L, 12 ), for m 6= 1.
(16)

Consequently, by substituting (1) and (16) into (15), the correct detection probability over theBSC is

given by:

Pd =

ηL
∑

d=0

(
L

d

)

P d
b (1− Pb)

L−d

{
Nl−1∑

p=0

(
M − 1

p

)[

(
1
2

)L
d∑

x=0

(
L

x

)]p [
(
1
2

)L
L∑

x=d+1

(
L

x

)](M−1)−p}

.

(17)

B. Probability of False Acceptance

The main reason to consider the probability of false acceptance is to investigate the reliability of

identification with respect to the acceptance of queries, which are unrelated to entries of the Database.

To evaluatePf , we define the following events:

ED(i:M)
= {D(i:M) ≤ ηL|H0}, (18)

where1 ≤ i ≤ Nl andED(i:M)
happens if theith of M ascendingly ranked i.i.d. Hamming distances

between the query and entries of the Database is smaller thanthe threshold. Moreover, from Remarks 1

and 5, conditioned onH0, Dm ∼ B
(
L, 12

)
for 1 ≤ m ≤ M . The probability of false acceptance is:

Pf = Pr{∪Nl

i=1ED(i:M)
|H0} = 1−Pr{∩Nl

i=1E
c
D(i:M)

|H0}
(a)
= 1−Pr{Ec

D(1:M)
|H0} = Pr{ED(1:M)

|H0} (19)

whereEc
D(i:M)

is the complement ofED(i:M)
, and (a) follows from the fact that if the eventEc

D(1:M)

occurs the remaining events are certain. Then, the probability of false acceptance is given by:

Pf = Pr

{

min
1≤m≤M

Dm ≤ ηL|H0

}

= 1−

[

1−

(
1

2

)L ηL
∑

x=0

(
L

x

)]M

. (20)

Remark 6. The probability of false acceptance is independent of the primary list size and the channel

crossover probability.

Remark 7. For the caseM = 1 andNl = 1, Pd andPf coincide with the probabilities of detection and

false alarm under the authentication setup using binary fingerprints defined in [14], [30].

In the following, we will present the results for large-scale identification applications to investigate the

impact of database cardinalityM , fingerprint lengthL and primary list sizeNl on the performance of

the CBI system. In Fig. 3, we demonstrate the receiver operational characteristic (ROC) computed using

(17) and (20) for various values of the parametersL, M andNl. Fig. 3a shows theROC curves for the
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Fig. 3. TheCLB decoding performance analysis for binary fingerprints.

range ofSNRs between−4dB and0dB, whereSNR = 10 log10
σ2
X

σ2
Z

, and primary list sizeNl = 32 for

M = 230 digital fingerprints of length256 bits in the Database. We observe that as theSNR decreases,

the probability of correct detectionPd reduces for a given probability of false acceptancePf . Fig. 3b

examines the influence of the number of fingerprintsM in the Database on the decoder performance

for a fixed fingerprint lengthL = 256 bits and theSNR=-4dB. AsM increases, the probability of false

acceptance increases and the probability of correct detection decreases. Consequently, for a givenPd,

thePf is higher, or equivalently, for a fixedPf , the probability of correct detection is lower. However,

this improvement occurs in the region with highPf . Fig. 3c demonstrates the decoder performance

enhancement using longer digital fingerprints for a given distortion level, allowing for the optimization

of the CBI system design with respect to this parameter. Finally, Fig.3d demonstrates the impact of

list size on theROC. Although we can increase the performance in term ofPd by increasing the list

sizeNl, this improvement is restricted by a certain range of primary list sizes. This confirms thatCLB

decoding can enhance the correct decoding at the cost of relaxing the constraint on the probability of

false acceptance introduced via the increased list size.
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C. Miss Error Exponent

In this section, we derive bounds on the probability of miss,which is complementary toPd, for the

DMC. Conditioned onH1, the probability of miss of the identification system based on theCLB decoding

is given by:

Pm = Pr{m1 /∈ Nl ∪ L1 < γL|H1} = Pr{m1 /∈ Nl ∩ L1 ≥ γL|H1}+ Pr{L1 < γL|H1} = P I
m + P II

m ,

(21)

The first term in (21) is referred to as theprobability of miss of the first kind, P I
m, and the second term

is theprobability of miss of the second kind, P II
m .

Remark 8. Under variable list size decoding approach [11], where there is no restriction over the list of

candidates,P I
m equals to 0.

Proposition 2. Consider aDMC with a transition probabilityp(y|x), and a Database of block length

L with M = eLR entries independently and identically generated according to p(x), and letp(y) =
∑

x∈X p(x)p(y|x). Suppose that the queryyN acts as an input to the content-based identification system

and theCLB decoding is applied. The averageCLB probability of miss is bounded by:

Pm ≤ exp[−NlL(E(γ) + γ −R)] + exp[−LE(γ)] (22a)

≤ 2 exp[−Lmin{Nl(E(γ) + γ −R), E(γ)}], (22b)

where
E(γ) = max

0≤s≤1
− ln

∑

y∈Y

∑

x∈X
p(x)p(y)sp(y|x)1−sesγ (23)

andγ is a fixed threshold.

Proof: Appendix C.

The miss error exponent is referred to asEm = min{Nl(E(γ) + γ −R), E(γ)}.

Remark 9. For, Nl = 1, (22a) coincides with the error probability given in [31] for communications.

Corollary 2. For anyγ < C, whereC = D(p(x, y)‖p(x)p(y)) is the DMC capacity,E(γ) > 0 and

E(γ) → 0 asγ → C.

Proof: Appendix D.

Corollary 3. For the binary symmetric channel with a crossover probability Pb, the list-decoding-based

average probability of miss is bounded, for anyη, Pb < η < 1
2 :

Pm ≤ {exp[−L(ln 2−R−H2(η))]}
Nl + exp[−LD(η‖Pb)] (24a)

≤ 2 exp[−Lmin{Nl(ln 2−R−H2(η)),D(η‖Pb)}]. (24b)
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Proof: Appendix E.

The corresponding miss error exponent over theBSC is given byEm = min{Nl(ln 2−R−H2(η)),D(η‖Pb)}.

Remark 10. For the caseNl = 1, i.e., unique decoding mode, the obtained miss probabilitybound

coincides with the result provided in [5], [14]. IfNl > 1, i.e., list decoding mode,P I
m converges to0 up

to Nl times exponentially faster than for unique decoding.

Remark 11. For Pb < η < 1
2 and R < ln 2 − H2(η), there exist fingerprints with rateR and miss

probabilityPm such thatlimL→∞ Pm = 0.

D. False Acceptance Error Exponent

In this section, we derive the upper bound onPf for the DMC.

Proposition 3. Consider aDMC with a transition probabilityp(y|x), and a database of block length

L with M = eLR entries independently and identically generated according to p(x), and letp(y) =
∑

x∈X p(x)p(y|x). Suppose that the queryyN acts as an input to the content-based identification system

and theCLB decoding is used. The average list-decoding-based probability of false acceptance is bounded

by:
Pf ≤ exp[−L(E(γ) + γ −R)]. (25)

whereE(γ) is defined in (23).

Proof: Appendix F.

The false acceptance error exponent is referred to asEf = E(γ) + γ −R.

Remark 12. If we setγ = R andNl = 1, thenPm ≤ 2 exp[−LE(R)] andPf ≤ exp[−LE(R)]. Since

E(R) > 0 for R < C, Pm → 0 andPf → 0 asL → ∞. Moreover, this holds forR close toC, then

one can conclude that the identification capacity is achievable.

Corollary 4. For theBSC with crossover probabilityPb, theCLB average probability of false acceptance

is bounded, for anyη, Pb < η < 1
2 :

Pf ≤ exp[−L(ln 2−R−H2(η))]. (26)

Proof: Appendix G.

The corresponding false acceptance error exponent over theBSC is given byEf = ln 2−R−H2(η).

Remark 13. For Pb < η < 1
2 andR < ln 2 −H2(η) there exist fingerprints with the rateR and false

acceptance probabilityPf such thatlimL→∞ Pf = 0.

Remark 14. From Remarks 11 and 13, bothPm andPf go to zero asL → ∞. Moreover, this holds

for η arbitrarily close toPb. Therefore, the identification rateR approaches the identification capacity in

the fingerprint domainC = I(Bx;By) = ln 2−H2(Pb) [32].

June 21, 2012 DRAFT



19

0.3 0.35 0.4 0.45 0.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

η

 

 

Em

Ef

(a) R = 0.001, Nl = 32, SNR=0dB

1 2 3 4 5 6 7 8 9

x 10
−3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ef

E
m

 

 

R = 0.001

R = 0.01

R = 0.05

(b) Nl = 32, SNR=0dB

Fig. 4. Error exponents of the probabilities of miss and false acceptance as a function of (a) decision thresholdη for a fixed

R and (b)R.

Fig. 4a and Fig. 4b exemplify the behaviour of error exponents (24) and (26) as functions of the

decision threshold and the identification rate, respectively. These results were obtained using the following

identification system operational parameters:L = 64, R = 0.001, Nl = 32, Pb = 0.25 obtained for

SNR = 0dB. Fig. 4a demonstrates that the probabilities of miss and false acceptance exponentially

vanish to zero as functions of the fingerprint length with rates that exponentially decrease/grow with an

increase in the decision threshold. In Fig. 4b, the obtainedresults demonstrate how the performance of

the CBI degrades with the system identification rate.

E. Probabilistic Analysis of List Content

In this Section, we analyze thePMF of the correct entry position on the resulting listN ′
l . Because of

the symmetric structure of the Database, we need only consider the case of the query being related to

the first entry of the Database. Conditioned onH1, the probability that the first index falls in thej th

position of the primary list is given by:

P (j)
(a)
= Pr{(L(M−j:M−1) < L1) ∩ (L(M−j+1:M−1) ≥ L1)|H1}

(b)
=

L∑

d=0

Pr{(D(j:M−1) > d) ∩ (D(j−1:M−1) ≤ d)|H1,D1 = d}pD1
(d)

(c)
=

L∑

d=0

(
L

d

)

P d
b (1− Pb)

L−d

(
M − 1

j − 1

)[

(
1
2

)L
d∑

x=0

(
L

x

)]j−1 [
(
1
2

)L
L∑

x=d+1

(
L

x

)]M−j

, (27)

where(a) follows from the fact that the first index falls in thejth position, if L1 is smaller than(j − 1)

largest of{L2, . . . ,Lm} and larger than the rest,(b) holds similar to (15), and(c) since the event

(D(j:M−1) > d) ∩ (D(j−1:M−1) ≤ d) occurs if exactlyj − 1 of D2,D3, . . . ,DM are less than or equal

to d and exactlyM − j of D2,D3, . . . ,DM are bigger thand.
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Fig. 5. Primary list order statistics of the relevant query in CBI with M = 230 andL = 512 in channels with distortions.

In Fig. 5, we show the impact of channel distortions on the position of the related entry in the primary

list of candidates (27) for a codebook ofM = 230 of lengthL = 1024 fingerprints. The primary list size

Nl was fixed to32, and the identification channel distortions were assumed tobe originated from theBSC

for the range ofSNRs from 0dB to -12dB. One can observe the natural consequence that by increasing

the channel degradation, the probability for the related entry falling into the first position decreases.

This behaviour also justifies why theCLB decoding is able to return the correct index on the list for

the properSNR while the ML decoding, which always selects the candidate with the largest likelihood

function completely fails. Moreover, in the strong distortion case, the likelihood of a correct candidate

on the list is almost equal to the ones of other list members. This makes the query almost equally likely

in relation to all elements on the list. Finally, the exponential character of the analyzedPMF allows for

the determining of a reasonable list size that will guarantee the desired value ofPd for human-centric

systems. In the casePd is assumed to be equal0.90, the average cardinalities ofNl are1, 16, and230,

respectively, for 3 operational regimes specified in Fig. 5.

VII. N UMERICAL EVALUATION

We validate the theoretical results by experiments using a database of synthetically generated sequences

and a real database of images.

A. Numerical results using Synthetic Database

In this Section, we perform the analysis of theoretical results presented in Sections V and VI based on

synthetic database. The goal of this analysis is twofold. Inthe first part, we experimentally confirm our

theoretical findings about the decorrelation property ofRP. In the second part, we analyze the performance

of the identification system in terms ofPd andPf . For this purpose, we generated three databases with

M = 1024 and lengthN = 4096 according to theAR(1) Gaussian process withρ = 0, ρ = 0.5 and

ρ = 0.75. The goal of the first experiment consists in the investigation of maximum residual correlation

in the projected datãx using 100 realizations ofRP. According to the theoretical results (8a), it is
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Fig. 6. The decorrelation and approximate i.i.d. preservation properties of theRP: (a), (b) and (c) the maximum off-diagonal

elements of the covariance matrix of the projected dataKx̃x̃ and the binarized version of the projected dataKbxbx
, using 100

different realization of theRP, where the original datax is generated from theAR(1) Gaussian process withσ2

X = 1 and

ρ = 0, ρ = 0.5 andρ = 0.75, respectively; (c) also shows the impact ofL = 32 andL = 256.

expected that the residual correlation in the projected data is negligible, which confirms the decorrelation

property ofRP. As in the enrollment stage, we first apply theRP defined in Section V to reduce the

dimensionality of each item toL = 32. Each element of the projected items is then quantized to onebit

according to whether it is greater and equal or less than zero. Fig. 6 shows the impact of the normalized

correlation coefficientρ and dimensionality reductionL on the maximum value of off-diagonal elements

of Kx̃x̃ and Kbxbx
using 100 different realizations ofW. Based on the simulation results shown in

Figs. 6, one can conclude that the elements of the randomly projected data, which are generated from

the AR(1) Gaussian process, are approximately uncorrelated. Therefore, it is possible to assume that the

resulting coefficients follow approximately i.i.d Gaussian distribution, due to the linearity ofRP and the

joint Gaussian distribution of the input. Moreover, it is important to point out the tightness of the bounds

obtained in (8a) and (8b). The obtained results show that thebounds’ tightness is a decreasing function

of the correlation coefficient in the transform input. The main argument justifying such a behaviour is

the use of Chernoff’s bounding techniques to data obeying a residual correlation. The development of

tighter bounds for (ρ ≥ 0.75) is left for future research.

In the second part of our modelling, we experimentally validate the identification system usingROC

curves underAWGN distortions. Fig. 7 shows theCLB decoding performance analysis for this type

of degradation for the databases mentioned above. The target range of operationalSNRs is limited to

[5, 15]dB, assuming that the channel noise is zero-mean white Gaussian with varianceσ2
Z . Based on these

experimental results, one can conclude that theCLB decoding performance under the proposed approach

of digital fingerprint extraction is approximately independent of the correlation between elements of the

data in the observation domain.
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Fig. 7. The identification performance analysis usingCLB decoding underAWGN distortions for a database of binary

fingerprints of dimensionalityL = 32 and cardinalityM = 1024 which are extracted from theAR(1) Gaussian process with

σ2

X = 1 ρ = 0, ρ = 0.5 andρ = 0.75.
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Fig. 8. Fingerprint extraction from images.

B. Numerical results using Image Database

In this subsection, we compare the performance predicted bythe theoretical analysis with simulation

results obtained using an image database. The used database, UCID [20] 3, consists of 1338 image of

size384 by 512. Fig. 8 illustrates a basic fingerprint extraction scheme under analysis based on 2DDCT.

In this scheme, each image is converted to gray scale and divided in16 by 16 blocks and the 2DDCT of

each block is computed. The feature vector is constructed byconcatenating theDCT coefficients at the

coordinates(1, 2) inside each block. Finally, the binary fingerprint of lengthL = 32 from each feature

vector is extracted by applyingRP and binarization. The main reason to use such a fingerprint extraction

scheme is justified according to the well-known decorrelation properties of DCT. In the case ofAR(1),

theDCT closely approximatesKLT [16] and provides almost perfect energy compaction and decorrelation

of the transformed coefficients. However, the obtained coefficients will have different statistics according

to the consideration of their covariance matrix, i.e., different variances in the case of consideredAR(1)-

model. Therefore, to satisfy the condition of stationarity, one can select the coefficients that possess the

same statistics in each block of DCT. In the above scheme, we have just chosen the coefficient at the

3the same database was used in [4] for fingerprinting system validation
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TABLE I

DATA STATISTICS IN DIFFERENT DOMAINS.

Feature domain RP domain Binary domain

ρ maxi6=j K
ij

x̃x̃ θX̃ maxi6=j K
ij

bxbx
P̂

0.41 0.08 1.74 0.07 0.5

coordinate (1,2). Obviously, other choices are possible. However, to keep a good trade-off between the

robustness and distinguishablity, the preferred coefficient should be in the range of middle frequencies.

Table I summarizes the statistics of feature vectors extracted from the UCID images. TheAR(1) model

parameter of feature vectorsρ is estimated by using the well-known least square method andYule-Walker

equation [16], and by averaging over all images in the database. As shown in this table, the coefficients

obey a certain correlation with a normalized correlation coefficient ρ = 0.41. The correlation between

components of the projected feature vectors are almost negligible and their marginal distribution approxi-

mately follows the Gaussian distribution. Finally, the extracted digital fingerprints followBernoulli(0.5).

This confirms to the main assumptions used in the theoreticalanalysis of fingerprint performance and also

demonstrates the ability of the fingerprinting system to generate an unique fingerprint for each image. We

evaluate the ability of the identification system to correctly identify an image after it has undergone the

potential malicious attacks listed in Table II, wherePSNR = 10 log10
2552

σ2
Z

. We compare the predicted

Pb, which is evaluated based on theAWGN model (10) withσ2
X andσ2

Z estimated in theRP domain,

and the empirical̂Pb, which is the average bit flipping in the binary domain. One can conclude a good

match between the predicted and estimated crossover probabilities for all class of distortions except the

histogram equalization. Furthermore, in the histogram equalization attack, the predictedPb using the GGD

model (11) withθZ̃ = 1.19 (Table II) equals to0.11 that is quite close to the empirical̂Pb = 0.1 (Table

II). The results imply that the assumption of the additive and independent noise and the corresponding

results in theRP domain is approximately valid.

TABLE II

L IST OF ATTACKS TESTED AND THE CORRESPONDING NOISE STATISTICS.

Attack Parameters Feature domain RP domain Binary domain

maxi6=j K
ij
zz θZ maxKzx maxi6=j K

ij

z̃z̃ θZ̃ maxKz̃x̃ maxi6=j K
ij

bzbz
Pb P̂b maxKbzbx

AWGN

PSNR=5 dB 0.03 2 0.03 0.08 2 0.09 0.08 0.20 0.21 0.09

PSNR = 10 dB 0.03 2 0.03 0.07 2 0.07 0.07 0.12 0.13 0.08

PSNR = 15 dB 0.03 2 0.03 0.08 2 0.08 0.08 0.07 0.08 0.09

PSNR = 20 dB 0.03 2 0.03 0.08 2 0.09 0.08 0.04 0.05 0.09

JPEG

QF = 1 0.04 1.2 0.09 0.1 1.93 0.1 0.1 0.10 0.11 0.09

QF = 10 0.04 1.8 0.05 0.07 1.96 0.08 0.08 0.03 0.04 0.09

QF = 25 0.03 1.95 0.06 0.06 1.99 0.09 0.07 0.01 0.01 0.09

Histeq 0.15 0.75 0.49 0.2 1.19 0.3 0.12 0.14 0.1 0.09
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Fig. 9. (a), (b) and (c) the identification performance analysis usingCLB decoding under the attacks listed in Table II for a

database of binary fingerprints of dimensionalityL = 32 and cardinalityM = 1338 which are extracted from UCID images;

(d) the detector performance for different length of fingerprints.

To evaluate the performance of the identification setup using theCLB decoding, the hypothesis testing

described in Section IV is performed andPm and Pf are evaluated. The obtained experimental and

theoretical results demonstrate an excellent match. Figs.9a, 9b and 9c show theROC curves of theCLB

decoding performance over theAWGN, JPEG compression and histogram equalization (Histeq) attacks,

respectively, with different primary list sizes. Althoughincreasing the primary list size can enhance the

performance in terms ofPd, this improvement is restricted over the specific range of primary list sizes if

low Pf is acceptable. Moreover, Fig. 9b demonstrates the simulation versus analytical results for JPEG

compression with the quality factor equals to1 using (17) and (20) assumingPb = 0.1 (Table II),

M = 1338, Nl = 1 andNl = 4. Additionally, to validate the detection capabilities of the considered

method, Fig. 9d shows the detector performance under authentication setup defined in Remark 7 using

the advocated fingerprint extraction scheme under the Histeq attack forL = 16 andL = 32 in terms of

Pm andPf , wherePf is estimated using 1000 pairs of randomly chosen original fingerprints.

VIII. C ONCLUSIONS

We analyzed the identification setup based on theCLB decoding framework. In light of this framework,
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we have investigated theCLB decoding performance by deriving closed-from analytical expressions and

bounds for the probabilities of correct detection and falseacceptance. The theoretical results are also

validated on synthetic data and a set of real images.

The simulation results show that, on the one hand, theCLB decoding can only improve the identifier

performance in lowSNR scenarios. On the other hand, this improvement is restricted by a certain range of

list sizes. The fingerprinting algorithm proposed in this context demonstrated an excellent performance

under the class of considered attacks that might even generate content dependent noise. In fact, we

have shown that the assumption of independence is valid and one can evaluate the performance of the

identification setup based on i.i.d. binary fingerprints.

Further improvement of the fingerprinting performance is envisioned by optimizing the feature ex-

traction with respect to its robustness to malicious attacks, especially geometrical attacks that have not

been directly addressed in this paper. In this respect, the use of robust features looks very promising;

features such as SIFT and their combination with the block-basedDCT considered in this manuscript.

One can also predict an essential improvement in the complexity of an identification problem by using

theBDD proposed in [5]. The complexity of this identification technique critically depends onPb and the

fingerprint length. The achievable values ofPb demonstrated in this paper, makes it feasible to perform a

search through a large-scale database even on computers with moderate computational power. Moreover,

an additional reduction in complexity is possible with the use of the bit reliability that was also considered

in [33]. In this respect, the theoretical framework developed in the current paper should serve as a basis

for the theoretical analysis of soft fingerprinting systems. Finally, we plan to test the identification setup

on several databases of medical images and physical unclonable microstructure images to evaluate the

uniqueness of fingerprints and their performance in terms ofROC curves. It is also very important that

security and privacy analysis be included in the proposed framework under consideration, and that appears

to be our next research challenge.
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APPENDIX A

PROOF OFPROPOSITION1

Proof: At first, we consider off-diagonal elements ofKx̃x̃ that can be expanded as follows:

K
ij
x̃x̃ =

N∑

r=1

N∑

c=1

wirK
rc
xxwjc = σ2

X

[

(wi1wj1 + · · · + wiNwjN )
︸ ︷︷ ︸

tij0

+ρ (wi1wj2 + wi2wj1 + · · · + wiNwjN−1)
︸ ︷︷ ︸

tij1

+ . . .+ ρN−1 (wi1wjN + wiNwj1)
︸ ︷︷ ︸

tijN−1

]

= σ2
X

N−1∑

k=0

ρktijk . (28)

Due to symmetry of a covariance matrix, we just investigate upper off-diagonal elements, i.e.,1 ≤ i <

j ≤ L. In order to bound these elements, we evaluate an upper boundfor the probability that the largest

upper off-diagonal elements ofKx̃x̃ is greater thanσ2
X

(
1−ρN

1−ρ

)

ζ, whereζ is a positive real value:

Pr

{

max
i 6=j

|Kij
x̃x̃| > σ2

X

(
1− ρN

1− ρ

)

ζ

}
(a)

≤
L(L− 1)

2
Pr

{

|Kij
x̃x̃| > σ2

X

(
1− ρN

1− ρ

)

ζ

}

=
L(L− 1)

2
Pr

{
1

σ2
X

(
1− ρ

1− ρN

)

|Kij
x̃x̃| > ζ

}
(b)

≤ L(L− 1) exp(−sζ)E

[

exp

(

s
1

σ2
X

(
1− ρ

1− ρN

)

K
ij
x̃x̃

)]

(c)
= L(L− 1) exp(−sζ)E

[

exp

(

s

N−1∑

k=0

κkT
ij
k

)]
(d)

≤ L(L− 1) exp(−sζ)

[
N−1∑

k=0

κkE
[

exp
(

sT ij
k

)]
]

(e)
= L(L− 1)

N−1∑

k=0

κk

[

exp(−sζ)

Nk∏

l=1

E

[

exp
(

sV ij
l

)]
]

(f)

≤ L(L− 1)

N−1∑

k=0

κk

[

exp(−sζ)

Nk∏

l=1

exp

(
s2

2N2

)]

(g)
= L(L− 1)

N−1∑

k=0

κk

[

exp

(

−
N2ζ2

2Nk

)]

= L(L− 1)

[

κ0 exp

(

−
Nζ2

2

)

+

N−1∑

k=1

κk exp

(

−
N2ζ2

(N − k)4

)]

≤ L(L− 1)

[

κ0 exp

(

−
Nζ2

2

)

+

N−1∑

k=1

κk exp

(

−
N2ζ2

(N − 1)4

)]

≤ L(L− 1) exp

(

−
Nζ2

4

)

. (29)
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whereκk = ρk
(

1−ρ
1−ρN

)

and
∑N−1

k=0 κk = 1, (a) since there are onlyL(L−1)
2 such identically distributed

random variables [34],(b) follows form the generalized Chernoff bound [31] fors ≥ 0, (c) holds from

(28), (d) holds due to the convexity ofexp(·), (e) follows thatE
[

exp(sT ij
k )
]

is the moment generating

function of T ij
k that is the sum ofNk ∈ {N, 2(N − 1), . . . , 2} i.i.d. Bernoulli(12) random variables

V ij = WirWjc ∈ {+1
N , −1

N }, (f) holds sinceV ij is a bounded random variable [35], and(g) holds by

choosings = N2ζ
Nk

. By substitutingζ =
√

12
N lnL and settingβ =

(
1−ρN

1−ρ

)√
12
N lnL, (8a) is obtained.

For the diagonal elements ofKx̃x̃, we have:

Kii
x̃x̃ = σ2

X +

N∑

r=1

N∑

c=1
r 6=c

wirK
rc
xxwic = σ2

X + 2σ2
Xρ (wi1wi2 + · · · +wiN−1wiN )
︸ ︷︷ ︸

dii
1

+ 2σ2
Xρ2 (wi1wi3 + · · ·+ wiN−2wiN )

︸ ︷︷ ︸

dii
2

+ . . .+ 2σ2
XρN−1 (wi1wiN )

︸ ︷︷ ︸

dii
N−1

= σ2
X + 2σ2

X

N−1∑

k=1

ρkdiik ,

Similar to (29), we evaluate an upper bound for the probability that the maximum deviation of diagonal

elements ofKx̃x̃ from σ2
X exceeds2σ2

X

(
ρ−ρN

1−ρ

)

ǫ, whereǫ > 0. This probability is given by:

Pr

{

max
i

|Kii
x̃x̃ − σ2

X | > 2σ2
X

(
ρ− ρN

1− ρ

)

ǫ

}
(a)

≤ LPr

{

|Kii
x̃x̃ − σ2

X | > 2σ2
X

(
ρ− ρN

1− ρ

)

ǫ

}

(b)
= 2L exp(−sǫ)E

[

exp

(

s

N−1∑

k=1

λkD
ii
k

)]
(c)

≤ 2L exp(−sǫ)

[
N−1∑

k=1

λkE
[
exp

(
sDii

k

)]

]

(d)

≤
N−1∑

k=1

λk exp

(

−
N2ǫ2

2(N − k)

)

≤ exp

(

−
Nǫ2

2

)

(30)

whereλk = ρk
(

1−ρ
ρ−ρN

)

and
∑N−1

k=1 λk = 1, (a) follows from the fact that there are onlyL such random

variables which are identically distributed [34],(b) follows form the generalized Chebyshev inequality

[31] for s ≥ 0, (d) results from the convexity ofexp(·), and (e) holds following the same results of

parts (f) and (g) in (29) and by choosings = N2ζ
2(N−k) . By substitutingǫ =

√
2
Nρ lnL and setting

α =
(
1−ρN−1

1−ρ

)√
8
N ρ lnL, (8b) is obtained.

APPENDIX B

PROOF OFCOROLLARY 1

Proof: This is a corollary of Proposition 1, whereρ → 0. For the off-diagonal elements ofKz̃z̃, we

can easily derive (9) by substitutingρ = 0. For the diagonal elements,α|ρ=0 = 0. Thus,Pr{maxi|K
ii
z̃z̃−

σ2
Z | > 0} < limρ→0

1

L(
1
ρ)

= 0 for all L > 1, which implies that∀i, 1 ≤ i ≤ L,Kii
z̃z̃ = σ2

Z .
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APPENDIX C

PROOF OFPROPOSITION2

Proof: Conditioned onH1, we defineEIj
as the event that there exists a subset of indicesIj ⊂

M′ = {2, . . . ,M} with |Ij| = Nl whose all log-normalized-likelihoods, i.e.,Lj(i), 1 ≤ i ≤ Nl, satisfies

Lj(i) > L1 andLj(i) ≥ γL. P I
m can be bounded for any0 ≤ s ≤ 1 as follows:

P I
m = Pr {(m1 /∈ Nl) ∩ (L1 ≥ γL)|H1} = Pr
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EIj

∣
∣
∣
∣
H1
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∣
∣
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Pr{(Lj(1) ≥ L1 ∩ L1 ≥ γL) ∩ · · · ∩ (Lj(Nl) ≥ L1 ∩ L1 ≥ γL)|H1}

(b)
= CPr{Lm6=1 ≥ L1 ∩ L1 ≥ γL|H1}

Nl

(c)
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Nl
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≤
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p(y[n])

)]}Nl

=

{

eLRe−uγL

{

E

[

exp

(

u ln
p(y|x)

p(y)

)]}L
}Nl

=







eLRe−uγL







∑

x∈X
p(x)

∑

y∈Y
p(y)1−up(y|x)u







L






Nl

=







eLRe−γL







∑

y∈Y

∑

x∈X
p(x)p(y)sp(y|x)1−sesγ







L






Nl

≤ {exp[−L(Eo(s, γ) + γ −R)]}Nl (31)

whereC =
(
M−1
Nl

)
, (a) follows from the union bound [13],(b) follows from the fact that the events

are independent andLms,m 6= 1, are i.i.d. random variables,(c) follows from the fact thatPr{Lm6=1 ≥

L1 ∩ L1 ≥ γL|H1} ≤ Pr{Lm6=1 ≥ L1|L1 ≥ γL,H1} ≤ Pr{Lm6=1 ≥ γL|H1} and inequlaity
(
M−1
Nl

)
≤

(M − 1)Nl , (d) follows from applying the Chernov bound [31] for any0 ≤ u ≤ 1 and0 ≤ s ≤ 1. And,

Eo(s, γ) is defined as:
Eo(s, γ) = − ln

∑

y∈Y

∑

x∈X
p(x)p(y)sp(y|x)1−sesγ . (32)

Finally, sinces is arbitrary in (32), we get the tightest bound by choosings to maximizeEo(s, γ).

Therefore, we have P I
m ≤ {exp[−L(E(γ) + γ −R)]}Nl , (33)

whereE(γ) is defined in (23). Using the Chernov bound,P II
m can be bounded for any−1 ≤ ν ≤ 0 as:

P II
m = Pr {L1 < γL|H1} ≤ e−νγL

E[exp(νL1)] = e−νγL
L−1∏

n=0

E

[

exp

(

ν ln
p(y[n]|x(1)[n])

p[y[n]]

)]

= e−νγL
L−1∏

n=0

∑

x∈X
p(x)

∑

y∈Y
p(y)−νp(y|x)1+ν (a)

=







∑

y∈Y

∑

x∈X
p(x)p(y)sp(y|x)1−sesγ







L

= exp[−LEo(s, γ)] ≤ exp[−LE(γ)] (34)
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where(a) follows from lettings = 1− ν, 0 ≤ s ≤ 1. Combining (33) and (34), we obtain (22a).
APPENDIX D

PROOF OFCOROLLARY 2

Proof: Using (32) one can see thatEo(0, γ) = 0, and it can be easily verified that∂Eo(s,γ)
∂s

∣
∣
∣
∣
s=0

=

−γ+C. Therefore, since forγ < C, Eo(s, γ) is a non-decreasing function ofs, then for any0 ≤ s ≤ 1,

Eo(s, γ) ≥ 0 implying E(γ) ≥ 0. Moreover, asγ → C, ∂Eo(s,γ)
∂s

∣
∣
s=0

→ 0 leading toE(γ) → 0.
APPENDIX E

PROOF OFCOROLLARY 3

Proof: For inputsp(0) = p(1) = 1
2 , the output probability will be given byp(0) = p(1) = 1

2 . Then,

Eo(s, γ) = s ln 2− sγ − ln
[
(1− Pb)

1−s + P 1−s
b

]
. (35)

By setting the derivative ofEo(s, γ) respective tos, equal to zero. We have

γ = ln 2 + η lnPb + (1− η) ln(1− Pb), (36)

whereη =
P 1−s

b

P 1−s

b +(1−Pb)1−s
, was defined in (15). By substitutingγ in (35), we get

E = D(η‖Pb). (37)

Finally, substituting (36) and (37) in (23), we obtain (24a). The equations are only valid forPb < η < 1
2 .

APPENDIX F

PROOF OFPROPOSITION3

Proof: Conditioned onH0, we defineEm, 1 ≤ m ≤ M , as the event that there existsxN (m) whose

Lm ≥ γL. The probability of false acceptance for any0 ≤ s ≤ 1 can be bounded as follows:

Pf =Pr







M⋃

j=m

Em

∣
∣
∣
∣
H0







(a)

≤
M∑

m=1

Pr

{

Em

∣
∣
∣
∣
H0

}

=

M∑

m=1

Pr{Lm ≥ γL|H0}
(b)

≤ Me−uγL
E[exp[uLm]]

=Me−uγL
L−1∏

n=0

E

[

exp

(

u ln
p(y[n]|x(m)[n])

p(y[n])

)]

= Me−uγL
L−1∏

n=0

∑

x∈X
p(x)

∑

y∈Y
p(y)1−up(y|x)u

=MeγL







∑

y∈Y

∑

x∈X
p(x)p(y)sp(y|x)1−sesγ







L

, (38)

where(a) follows from the union bound, and(b) holds since the events are i.i.d. and using the Chernov

bound for any0 ≤ s ≤ 1 and0 ≤ v ≤ 1. Finally substitutingM = eLR in (38), we obtain (25).

APPENDIX G

PROOF OFCOROLLARY 4

Proof: Similarly to the proof of Proposition 3, by substitutingγ = ln 2+η lnPb+(1−η) ln(1−Pb)

andE = D(η‖Pb) in (25), (26) is obtained.
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