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INTRODUCTION

The application of modern sensor technologies makes it
possible to solve a wide range of applied problems.
"However, in most cases the quality of primary radar and
radiometry images is far from desirable for unequivocal
data interpretation and object recognition.  This
considerably decreases the possibility of using such
systems in the solution of the problem of safe mine
removal. Among ‘the main factors, that reduce image
quality and decrease probability of correct detection and
confidence level, are the spatial blurring effects of
imaging systems and noise of different types. The main
blurring factors, that lead to ambiguity of measurement,
are finite imaging aperture, sparseness of aperture
resulting in large side lobes in a directional -antenna
pattern, and' nonoptimal beamforming caused by phase
errors in aperture.. These:lead to a decrease in plan
resolution. Additionally, the' situation is complicated by
errors of measurement or noise in the receiver and data
acquisition system, which can be modeled by additive
Gaussian noise. In many cases, the received data is
nonuniformly sampled owing to failures in the spatial
scanning -system” or. the physical ‘nature of possible
spatial sampling, resulting in information loss. The last
two distortions’ can be represented by impulse noise on
the basis of the “salt and pepper” model.

To enhance image quality, deconvolution is often used
as an alternative to additional measurements. - This
relates to solution of an inverse ill-posed problem, and
consists in mathematical compensation for the
degradation using image . restoration and noise
suppression methods. The aim of this paper is to
demonstrate the advantages: of the proposed robust
estimation  strategy in the restoration of low-contrast
radiometry images, and its possibilities regarding mine
detection in an environment of objects with similar form
and dimensions. The paper presents a robust approach to
image restoration that combines the properties - of
classical regularized iterative algorithms and robust
features based on the concept of -M-estimators. The
proposed technique could. be efficiently used for. the
solution of the depth resolution enhancement problem in

radar applications. - . :

MODEL OF IMAGING SYSTEM

Image degradation caused ~by blurring and image
contamination with Gaussian and impulse noise, can be
represented by the following model:

Hf +n, with pfobabilit’y 1-p
& = 8min+ With probdbility pil2 1)
Euvexs With probability p | 2
where g represents the degraded image and n is a

Gaussian noise component. H - represents the linear
spatially invariant blurring operator and . f denotes the

original image. g, and g, ‘are the minimum and
maximum values of the image dynamic range.

RESTORATION ALGORITHM

Despite the variety -of approaches' to. the restoration
problem, it can:- be formulated in " general as the
estimation or retrieval of the -original image from the
degraded image using available a- priori information
about the model of observation: (1), the blurring
function, the noise statistics, and the: original image
(given in the- form of ‘image sniOOthness, solution
constraints on - some . specific .image features, and
parametric image models). This involves the solution of
inverse problems. which are known to-be ill-posed.
According to the nature of @ priori-information used and
the estimation strategy, i.e. minimum mean square error
(MMSE) or least squares error (LSE) estimators, the
methods can  be divided = into stochastic and
deterministic. If - only - “information-  about image
smoothness is used, the methods are supposed to be
linear ones, and nonlinear if specific image features
such as nonnegativity or finite extent are included in a
compound function as constraints. Linear methods are
unable to solve the extrapolation problem, and thus
cannot increase spatial resolution. Therefore, only
nonlinear methods are further considered in. this paper.
However, if there is some uncertainty regarding these
constraints, such as errors in blurring operator definition
or variation of the real noise statistics from those
assumed typical for -radar and  radiometry imaging
problems, then the above approaches fail to restore the
image uniquely. The above problem can be effectively
solved by means of robust estimators such as L-; R- or

M-estimators. The second problem of image restoration

is in. global assumptions about the image behaviour
which suggest stationarity in stochastic approaches and
smoothness in deterministic ones. The approach used in
this paper refers to the deterministic group. of methods,
and to overcome this drawback a spatially adaptive
approach using a.modified noise visibility function is
proposed. ’ ' '
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Since classical regularized algorithms based on LSE
approach fail to restore images in the presence of
impulse noise, a robust estimation strategy using an M-
estimation approach is used: this is considered in the
next section.

Robust adaptive restoration based on M-estimation

The robust estimation problem based on M-estimation
concept with constraint on image smoothness is
formulated according to the criterion

mina{f] = olg - 1) +ocF @

where p(.) is a robust positive-definite objective

estimation function, “." is matrix norm, C is a high-pass
filter, and O is a regularization parameter. In many
practical situations, the minimization problem is solved
by converting (2) into a weighted least squares problem
which is then handled by available subroutines. The
weights depend on the assumed objective function and
the noisy data. In order to take into account information
about local features of the restored image we propose to
modify the above minimization problem:

min®{f] = py (¢ - Hf) + ofcr|

where pw( ) = wp(.) is a weighted objective function
with weight coefficients W of a diagonal matrix W
which are connected with image pixels and define
spatial image activity. Therefore, the problem of
adaptive robust image restoration consists in: (i) proper
choice of objective function, determined by prior
assumptions about the noise distribution, and (ii)
definition of an adaptation strategy that takes -into
account “prior” knowledge of local structure of the
restored image and is calculated using a modified noise
visibility function. '

3

Objective function. The application of steepest descent
algorithms to the solution of the minimization problem
(3) results in the iterative scheme :
frr=fr-pad it gt @

where f ! is the estimate of f on k+1 iteration, B is a
relaxation parameter that controls the convergence rate,
and

d®| f . .

—df_]_ = —2H™W¥(g - Hf ) + 20C"Cf )
where W(r) =dp(r)/dr is an influence function and
r=g—Hf the «T»  denotes matrix
transpose. In classical restoration approaches, the
residual is assumed to have a normal distribution due to
the assumption of additive Gaussian noise in model (1).
In this case a LSE estimator is used

1
p(r) = 57‘2

is residual,

and W(r)=r. 6)
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However, model (1) includes not only additive Gaussian
noise, but also an impulse component. Depending on
the nature of the impulse noise the following objective
functions are chosen in practice (see Press et al (1)):

- for double or two-sided distribution

p(r) =1r| and W(r)=sgn(r) (@)
- for Lorenzian distribution
1
plr) =log 1+=7r* |and W(r)=——. ()
2 : 1,
1+5r
“Salt-and-pepper” impulse noise is not directly

described by means of such distributions, because it has
more intensive “tails”. The typical histogram
distributions of a low contrast original image, blurred
image, blurred and noisy image according to model (1),
and residual, are shown in Figure 1a,b,c,d, respectively.
We propose a generalized influence function

or

W(r)= T
1t
With the correct choice of parameters 0 and D, which
determine the break-point in:the function to reduce the
influence of large residual values, all the above types of
impulse noise could be effectively removed. The use of
such influence functions was proposed by
Voloshynovskiy et al (2) applied to image restoration
problems in high resolution radar imaging systems. The
objective and influence functions for the LSE and
proposed (8 =35, V=15) estimators are shown in
Figures 2 and 3, respectively.

®

The resulting iterative algorithm, that minimizes (3) for
the influence function considered above and constraints
on solution, is

7 = e R[7*] + pH We(g - HH(f*]) ©

where operator Cg = [ —affC TC represents a low-
pass filter that smoothes the restored image to prevent
noise fluctuations in the solution and is a soft constraint
on smoothness. R is the projection operator onto the
convex set of nonnegative solutions and solutions with
the given properties of amplitude image spectrum -
R=C,Cy 10)
where C),_ is constraint on nonnegativity of the solution
and C,, is constraint on a priori given model of the

solution. Unfortunately, constraint C,, is not directly
available in many practical applications. Therefore, a
parametric model in the frequency domain proposed by
Hrytskiv and Voloshynovskiy (3) is used that takes into
account the spatial anisotropy of real image spectra. The
upper bound of the restored image model is determined
by constraint on smoothness of solution and the above
constraint determines the lower bound. The use of this
constraint effectively removes ringing effects in the
restored image.
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Figure 1: Histogram distributions of (a) original image f;
(b) blurred image Hf; (¢) blurred and noisy image g,
(d) residual ¥
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Figure 2: Objective functions of LSE and proposed
estimators shown in dotted and solid lines,
respectively

Influence function ¥(r)
100

-100 L
100 50 0 50 100

: Residual
Figure 3: Influence functions of LSE and proposed
estimators shown in dotted and solid lines,
respectively

Adaptation strategy. The key point of the ‘adaptation
strategy is calculation of a noise visibility function. The
role of the noise visibility function in our formulation s
to mathematically express regions of high spatial image
activity that correspond to edges and fine details in the
image, and low activity associated with flat areas. In the
case of hard thresholding, this could be expressed as

0 feR,
Lif feR,.

where R, is an edge region and Rf is a flat area,

NVF:{ ReEs

which are determined using an edge detection operator
or local image variance. We propose to use a modified
NVF based on fuzzy logic, using a sigmoid function to
obtain a robust ‘estimation of -the above regions

T exp(-(c - L))

where 7y describes the degree of fuzziness and

(12)

- min) /d determines the shift
of activation function between maximum and minimum

parameter L = (02

max
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values of partially restored image variances
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in OD Kk iteration. It was experimentally established
that a good compromise between noise activation and
edge connectivity could be achieved for Y= 001 and
d = 35. Thus, threshold L depends on maximum and
minimum image variances and is selected adaptively to
each image. The activation function used in (12) for
NVF calculation is depicted in Figure 4.
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Figure 4: Activation function for NVF calculation

RESULTS OF COMPUTER SIMULATION AND
CONCLUSIONS

This section demonstrates the main properties of the
proposed robust restoration algorithm in comparison
with classical techniques. The comparison measure is
defined according to SNR between original image f,
degraded image g and restored image f*

A
=TT

i
SNR =10log,, 37~ dB
h

(13)

(14)

where y-= g for direct observation and y = f* for the
restored image. Numerous experiments established the
optimal parameters of the proposed influence function
6=35,v=>5, ie. that gives the best compromise
between impulse noise suppression and image
degradation caused by decrease of the residual dynamic
range. The 256x256 low-contrast test image “Minefield”
was chosen (Figure 5a). Two types of objects were used
in this image: circular “false” objects and “mines” which
were modeled by the same circular structure with a low-
contrast “hat” inside. - This image was blurred by an
antenna system with ratio of maximum image spatial
frequency to antenna cut-off frequency of 2, with
uniform field distribution over the aperture. Additive
zero-mean Gaussian noise was added to the blurred
image to obtain SNR 25 dB and the resultant image
corrupted by salt-and-pepper impulse noise with p=0.3

(Figure 5b) and p=0.6 (Figure 5c). The results of
median filtering, with window size L=5 for the image
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from Figure 5b and L=11 for the image from Figure Sc,
are shown in Figure 5d, g, respectively. Such windows
were chosen to completely eliminate impulse noise from
the above images which could lead to false object
detection. Due to the choice of large windows, caused
by this requirement, and the noncompensated influence
of the antenna system, the resultant images are
characterized - by poor resolution. Noise visibility
functions, used further for the first iteration in our
proposed restoration algorithm, were calculated from the
median filtered images and for comparison are depicted
in Figure Se, h. Obviously, poor resolution caused a
high level of ambiguity in the mine classification task.
The application of the new algorithm to the restoration
of images from Figure 5b, ¢ is shown in Figure 5f, i,
respectively. These images are obtained after 30
iterations with O = 0.01. The images obtained have
better quality and demonstrate high robustness of the
proposed algorithm to impulse noise (see TABLE 1).
During restoration, adaptation based on the proposed
noise visibility function was performed. To compare the
fevel of coincidence between the noise visibility
function calculated from original -image and the noise
visibility functions used during restoration, the
corresponding images are shown in Figure 5j, k, 1. The
results demonstrate an excellent match.

TABLE 1 - Comparison based on SNR between various
methods in robust estimation schemes

Impulse Direct Median Proposed

noise (p)  ©bservation filtering method
30% 4.8dB 25.8dB 30.2dB
60% 1.9dB 24.2 dB 28.6 dB

This comparative analysis indicates the effectiveness of
the proposed approach in terms of its robust features
which give an increased probability of mine detection
from low-resolution noisy images, and the
discrimination of the detected objects among objects
with similar geometry and dimensions.
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Figure 5: Results of computer simulation: (a) original “Minefield” image; (b) blurred and noisy image (a)
with 25 dB additive Gaussian noise and 30% impulse noise; (c) blurred and noisy image (a) with 25 dB
additive Gaussian noise and 60% impulse noise; (d) and (g) results of median filtering applied to images (b)
and (c), respectively; (e) and (h) noise visibility functions obtained from median filtered images; (f) and (i)
results of restoration by means of the proposed algorithm after 30 iterations for images (b) and (c)
respectively; (j), (k) and () noise visibility functions calculated from original image (a), and restored images
(f) and (i), respectively
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