Watermark attacks

S. Voloshynovskiy, S. Pereira, T. Pun
Computer Science Department,
Centre Universitaire Informatique (CUI)
University of Geneva
Switzerland

Contact:
http://cuiwww.unige.ch/~vision
Content

1. Introduction
 1.1 Why deal with attacks
 1.2 Goals of watermarking attacks
 1.3 Families of watermark attacks
 1.4 Benchmarking watermarking methods
 1.5 Benchmarking watermark attacks

2. Stochastic attacks
 2.1 Introduction
 2.2 Stage 1: watermark estimation
 2.3 Stage 2: noise addition
 2.4 Results of stochastic watermark removal

3. Synchronization attacks
 3.1 Introduction
 3.2 ACF analysis
 3.3 Template removal

4. Conclusions
1. **Introduction**

1.1 **Why deal with attacks**

Market is lukewarm towards watermarking technology:
- non-disclosed methods;
- no standard, general purpose benchmark;
- lack of robustness to attacks.

(Almost) anybody can break a watermark:
- blind use of simple manipulations;
- after study of the methods.

Why work on attacks:
- develop better methods, as with cryptography;
- define better benchmarks.

Pioneering work: Stirmark (benchmarking), Unzign.
1.2 Goals of watermarking attacks

Notations:

\[x: \text{original (cover image), size } N = M \cdot M, \]
\[n: \text{noise-like watermark}, \]
\[y: \text{stego-image, with} \]
\[y = x + n \] \hspace{1cm} (2.1)
\[y': \text{attacked stego-image}. \]

Main goals of attacks on watermarks:
• preserve image quality:
\[y' \equiv x \] \hspace{1cm} (2.2)
• render watermark undetectable/undecodable.

Our goal is to use prior knowledge:
• of watermark and image probability distributions;
• of the watermarking method used.
1.3 Families of watermark attacks

Main attack families we are concerned with:

• geometric → desynchronization, e.g.:
 - affine transforms;
 - cropping, row/column removal;
 - random local distortions;
 - mosaicing;
• signal processing → desynchronization, watermark drowning, e.g.:
 - lossy compression, (re)quantization, dithering;
 - linear, non-linear and adaptive filtering, denoising;
 - multiple watermarks, noise addition;
 - collage, superimposition;
 - stochastic attacks;
• specialized, based on knowledge of method:
 - desynchronization attacks;
 - chrominance attack;
 - etc.

We ignore here cryptographic attacks, system-based attacks (e.g. Oracle, counterfeit original, averaging).

Stirmak: geometric, signal processing.
1.4 Benchmarking watermarking methods

3 related criteria for watermarking, reflected in the benchmarks:

Visibility V:
- subjective human evaluation;
- HVS-based computer model;
- PSNR:

\[
PSNR = 10\log\frac{\max_{x} \text{luminance}_x^2}{\|(y - x)\|^2}
\]

(2.3)

Capacity C: bits, typically 64 .. 100.

Robustness R:
- bit error rate;
- binary decision:
 - watermark detected;
 - watermark not detected.

Stirmark: subjective evaluation, binary answer only.
1.5 Benchmarking watermark attacks

Visibility V:
- subjective human evaluation;
- HVS-based computer model;
- **weighted PSNR** measured on $y' - x$:

$$w\text{PSNR} = 10 \log \frac{\text{max}_x \text{lum}_x^2}{\| (y' - x) \|_{\text{NVF}}^2} = 10 \log \frac{\text{max}_x \text{lum}_x^2}{\| (y' - x) \cdot \text{NVF} \|_2^2}$$ \hspace{1cm} (2.4)

(e.g. flat region: NVF = 1 \rightarrow max penalization)

Capacity C: given number of bits.

Robustness R:
- bit error rate;
- binary answer:
 - watermark detected;
 - watermark not detected.
- ternary answer:
 - watermark present & detected,
 - watermark present & not detected,
 - watermark not present.
The wPSNR is closer to perception than the PSNR:

<table>
<thead>
<tr>
<th>Stego-image</th>
<th>PSNR</th>
<th>wPSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.6dB</td>
<td>26.4dB</td>
</tr>
<tr>
<td></td>
<td>24.6dB</td>
<td>27.9dB</td>
</tr>
<tr>
<td></td>
<td>24.6dB</td>
<td>29.3dB</td>
</tr>
</tbody>
</table>
2. Stochastic attacks

2.1 Introduction

Goal: general attack on watermark schemes.

The attack:

- takes into account human perception;
- is stochastic: applicable to a wide class of image and video watermarking schemes.

Can be used against embedding schemes operating in coordinate or transform (FT, DCT, wavelets) domains.

Masking property:

(Details in Information Hiding 1999 paper.)
Two stages attack:
- watermark estimation and removal: denoise;
- watermark hiding: add noise, using watermark statistics and HVS properties.

Basic idea:

Implementation:
2.2 Stage 1: watermark estimation

Goal: remove watermark from flat regions.

Watermark:

\[\hat{n} = y - \hat{x}, \]

(2.5)

where \(\hat{n}, \hat{x} \) are estimates of watermark & cover image.

Assumptions:

- watermark = Gaussian r.v., indep. ident. distributed samples (spread spectrum wm, binary wm + NVF):

\[p_n(n) \propto \text{i.i.d.} N(0, \sigma^2_n) \]

(2.6)

- cover image: stationary Generalized Gaussian distribution, i.i.d. samples:

\[p_x(x) \propto \text{i.i.d.} GG(\bar{x}, R_x) \]

(2.7)

for which the shape parameter \(\gamma \) can vary:

\[\gamma = 2: \text{Gaussian distribution}, \]
\[\gamma = 1: \text{Laplacian distribution}, \]
\[0.3 \leq \gamma \leq 1: \text{real cover images}. \]

Other possibility: non-stationary Gaussian pdf for cover image (see Information Hiding 1999 paper).
Estimation of \hat{x}:

$$\hat{x} = \arg \max \{ \ln p_n(y | \tilde{x}) + \ln p_x(\tilde{x}) \}, \ \tilde{x} \in \mathbb{R}^N$$ \hspace{1cm} (2.8)

Iterative RLS - Reweighted Least Squares solution:

$$\hat{x}^k \rightarrow \hat{w}^{k+1} \rightarrow \hat{x}^{k+1} \hspace{1cm} (w: \text{weight})$$ \hspace{1cm} (2.9)

Resulting formulation, similar to the Lee filter:

$$\hat{x}^{k+1} = \hat{x}^k + \frac{\hat{\sigma}^2_{x_k}}{\hat{w}_n^k \hat{\sigma}^2_n + \hat{\sigma}^2_{x_k}} (y - \hat{x}^k)$$ \hspace{1cm} (2.10)

Equivalent form as generalized Wiener filter:

$$\hat{x}^{k+1} = \frac{\hat{w}_n^k \hat{\sigma}^2_n}{\hat{w}_n^k \hat{\sigma}^2_n + \hat{\sigma}^2_{x_k}} \hat{x}^k + \frac{\hat{\sigma}^2_{x_k}}{\hat{w}_n^k \hat{\sigma}^2_n + \hat{\sigma}^2_{x_k}} y$$ \hspace{1cm} (2.11)

where for one iteration step k:

- $\hat{\sigma}^2_n$: wm variance estimate, eg. on flat regions;
- $\hat{\sigma}^2_x \rightarrow \hat{\sigma}^2_{x_{i,j}}, \ i, j \leq N$: local img variance estimate;
- $\hat{w}^k(i, j) = \frac{\gamma [\eta(\gamma)]^\gamma}{|r^k(i, j)|^{2-\gamma}}, \ \hat{f}(i, j) = \frac{\hat{x}(i, j) - \hat{\hat{x}}(i, j)}{\hat{\sigma}_x}$;
- γ: estimated using moment matching;
- $\eta(\gamma) = \sqrt{\Gamma(3/\gamma)/\Gamma(1/\gamma)}$, with Gamma function.
2.3 Stage 2: noise addition

Goal: add noise to hide/cancel watermark.

Noise visibility function (assuming noise $N(0, 1)$):

$$
NVF(i, j) = \frac{w(i, j)\sigma_n^2}{w(i, j)\sigma_n^2 + \sigma_x^2} \rightarrow \frac{w(i, j)}{w(i, j) + \sigma_x^2}
$$ \hfill (2.12)

Behavior:
- flat regions: $NVF \rightarrow 1$
- textured regions and edges: $NVF \rightarrow 0$

Watermark drowning:

$$
y' = \hat{x} + [1 - NVF(i, j)] \cdot m(i, j) \cdot S_e + NVF(i, j) \cdot m(i, j) \cdot S_f
$$ \hfill (2.13)

where:
- m: factor used to remodulate the watermark:
 $$
m(i, j) = -1 \cdot sgn[\hat{n}(i, j)]
$$ \hfill (2.14)
- $\hat{n}(i, j)$: estimated from (2.11) and (2.5);
- S_e: strength factor for edge regions;
- S_f: strength factor for flat regions.

(If e.g. $S_f = 0$ and $S_e = 0$: pure denoising attack.)
2.4 Results of stochastic watermark removal

Software A, image 1:

<table>
<thead>
<tr>
<th>Original x</th>
<th>Stego-image y</th>
<th>$y'(S_e=2, S_f=1.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR 34.7dB</td>
<td>PSNR 34.5dB</td>
<td>wPSNR 35.7dB</td>
</tr>
<tr>
<td>wPSNR 35.7dB</td>
<td></td>
<td>wPSNR 37.2dB</td>
</tr>
</tbody>
</table>

Message: *no watermark detected.*
Software A, image 2:

original x

PSNR 35.8dB
wPSNR 37.4dB

stego-image y

PSNR 35.3dB
wPSNR 38.5dB

y'(S_e=2,S_f=1.5)

y - x

y' - x

Message: no watermark detected.
Software A, image 3 (synthetic image):

<table>
<thead>
<tr>
<th></th>
<th>Original x</th>
<th>Stego-image y</th>
<th>(y(S_e=2, S_f=1.5))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR 35.4dB</td>
<td>PSNR 35.1dB</td>
<td>wPSNR 36.6dB</td>
</tr>
<tr>
<td></td>
<td>wPSNR 38.1dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Message: *no watermark detected.*
Software B, image 1:

original x
PSNR 41.5dB
wPSNR 42.5dB

stego-image y
PSNR 41.5dB
wPSNR 42.5dB

y'(S_e=2,S_f=1.5)
PSNR 39.1dB
wPSNR 40.6dB

Message: *no watermark detected.*
Software B, image 2:

<table>
<thead>
<tr>
<th>original x</th>
<th>stego-image y</th>
<th>y′(S_e=2,S_f=1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR 41.5dB</td>
<td>PSNR 38.7dB</td>
<td>wPSNR 42.9dB</td>
</tr>
<tr>
<td>wPSNR 42.9dB</td>
<td>wPSNR 41.3dB</td>
<td></td>
</tr>
</tbody>
</table>

Other parameters:

<table>
<thead>
<tr>
<th>y′(S_e=1,S_f=1.2)</th>
<th>PSNR 40.5dB</th>
<th>wPSNR 42.6dB</th>
</tr>
</thead>
</table>

Message: *no watermark detected.*
Software B, image 3 (synthetic image):

<table>
<thead>
<tr>
<th>original x</th>
<th>stego-image y</th>
<th>y'($S_e=2, S_f=1.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR 41.2dB</td>
<td>PSNR 38.9dB</td>
<td></td>
</tr>
<tr>
<td>wPSNR 43.1dB</td>
<td>wPSNR 41.4dB</td>
<td></td>
</tr>
</tbody>
</table>

Message: *no watermark detected.*
3. Synchronization attacks

3.1 Introduction

Goal: desynchronize spread-spectrum sequence.

Means of attack:
- (geometric distortions;)
- template search and removal:
 - known pattern (cross, sine wave);
 - peaks;
- ACF analysis.

3.2 ACF analysis

Use knowledge from ACF to determine period T:

Knowing T:
- better estimate of watermark \(\hat{w}\) \(\rightarrow\) easier removal;
- modify estimated watermark \(\hat{w}\) to cancel ACF.
3.3 Template removal

Goal: remove synchronizing template.

Principle: identify template peaks in FT domain.

Algorithm:
- cut the stego-image \(y \) into adjacent blocks;
- average the Fourier transforms of the blocks;
- estimate stable peaks as template peaks;
- Fourier transform the entire image;
- remove template peaks at the identified locations.

Example:

\[
\begin{align*}
\text{stego-image } y & \quad \text{FT}(y) \\
\text{no visible peaks} & \quad \text{FT}(y) \\
\text{after blocking and averaging} &
\end{align*}
\]
4. Conclusions

State-of-the-art: possible to hide/remove any watermark while preserving image quality.

Final remarks:
- very useful to study watermark attacks;
- watermarking methods should make use as much as possible of image and watermark statistics;
- assume attackers know your method → Kerkhoff’s principle.

Final final remark: the bad guys are always one step ahead ...

Acknowledgements: CUI people (G. Csurka, F. Deguil-laume, J. O’Ruanaidh), DCT people (A. Herrigel, N. Baumgärtner), EPFL-LTS people, and others ... Swiss Priority Program on Information and Communication Structures, ESPRIT OMI Project JEDI-FIRE.