
Appendix to the Bachelor project entitled
”A physiologically driven computer interface using EMG”

BCI2000 v2.0

tutorial

Author:
Jeremy Davis

Supervisors:
Prof. Thierry Pun

Guillaume Chanel
Mohammad Soleymani

Computer Science Department

University of Geneva

September 16, 2008

Chapter 1

Introduction

This documentation is a tutorial for the BCI2000 software (version 2.0). It
will cover every step I had to take for my project (”A physiologically driven
computer interface using EMG”), including the download of the source code,
building of the code, and installation. The creation of an acquisition module
will not be covered, since I used Biosemi2ADC and most hardware has an
acquisition module for BCI2000 ready for use.

If anything is unclear, you can always find more information on the
BCI2000 wiki or the forum [1].

1

Chapter 2

First Steps

This chapter will explain how to download the source code, install the soft-
ware, and do run a test.

2.1 Requirements

Before starting, you must have Borland C++ Builder 6 or more recent be-
cause the operator and most application modules rely on the Borland VCL
library. If you do not have it, you will have to get it somehow.

This also means that you will have to use Windows XP, as it is the only
operating system that supports Borland C++ Builder. In the future (no
date announced), BCI2000 should be platform independent [2].

You will also need some knowledge of C++, since everything will be coded
in that language. Fortunately, if you are not comfortable with it, it is easy
to find documentation and tutorials.

2.2 Download

The first step is of course to download the source code. For that you will need
a login and password that will be granted to you freely (after you fill a legal
form) if you are part of a research institute or university. Just head on the
main download page [11] and follow the instructions. If your supervisor (or
someone else) already has an account, he should be able to give you access
to the source code.

2

The source code is then accessible via Subversion (SVN). It is a version
manager for projects, so people working on the same project can modify
different parts without having to count them, or inform the others of the
changes. It is a successor to Concurrent Versions System (CVS). The wiki [10]
explains how to download and use TortoiseSVN in case you do not have a
SVN client and then how to set up your client to download the source code.

Once you have downloaded the source code, you should have a folder with
these contents:

• batch - Contains instructions for batch demonstrations.

• data - Contains data samples.

• doc - Contains the BCI2000 wiki in full.

• parms - Contains examples of parameter files, which are saved config-
urations (see section 2.5).

• prog - Contains all compiled modules. And the default folder where
your compiled modules will be saved.

• src - Contains the source code.

– buildutils - Command line utilities for compilation (mostly for-
matting)

– contrib - Contains all the modules developed by third parties (that
means you should save your work in here).

∗ AppConnectorApplication

∗ Application - For application modules

∗ SignalProcessing - for signal processing modules

∗ SignalSource - for acquisition modules

∗ Tools

– core - Contains all the modules developed by BCI2000. It also has
the source code for the launcher and the operator. It contains ba-
sically the same folders as contrib, to keep the modules organized
by role.

– doc - Documentation creation files.

– extlib - Contains all external libraries (.lib files).

3

– shared - Contains all the code files that are meant to be used by
modules. They are sorted by use (types, modules, fileio, bcistream,
etc...). Most filters are here (under modules) so as to be available
to more than one signal processing module or application. All the
super-classes are here too (GenericFilter, ApplicationBase, etc...).

• tools - Contains miscellaneous tools.

• BCI2000 Help.

• GettingStarted.

This list omits most subfolders because they are either explicit or empty.

2.3 Installation

I recommend copying the ”src”,”prog” and ”tools” folders to another loca-
tion, so as not to risk problems in case you choose to update your files with
SVN. Updating the project may change more than you expect and force you
too modify your code to fit the new protocol. When you compile the different
modules, the executable will be created in the ”prog” folder.

The next step is to install the acquisition module for Biosemi’s Active2.
If you do not plan on using this, you will have to find out how to install your
hardware’s module on your own. Start by checking the contributions page
of the wiki [3].

Bisoemi2ADC is part of the BCI2000 source code you have downloaded in
the previous step. You can find it in the ”src/contrib/SignalSource/Biosemi”
directory. There you will find a file named ”Labview DLL.dll”. You must
copy it to the ”prog” folder.

Now that everything is installed, you are ready to test BCI2000.

2.4 General Architecture

The BCI2000 operator is the coordinator of the different modules, as shown
in figure 2.1.

4

Figure 2.1: BCI2000 Diagram

This diagram also shows
the communication flow between
each of the three modules. The
acquisition module is the inter-
face with the hardware you are
using to record the physiological
signals. Its purpose is to con-
vert the signals into a commu-
nication package that the next
module will understand, following the BCI2000 protocol. The signal is sam-
pled at a chosen rate and passed on as blocks of a chosen size. For more
information on the package architecture, see the wiki page [7].

The signal processing module processes each sample block to compute a
new ouput vector that the application module can use as input.

2.5 BCI Launcher setup and test

With all that, we can start compiling.
Launch Borland C++ Builder and open the project named ”BCI2000”

in the ”src” folder. Then choose ”Project” → ”make all projects” from
the top menu bar. This can take quite a while (10-15 minutes, depending on
your computer).

After that, try launching BCI2000 by double-clicking the ”BCI2000launcher”
icon in the ”prog” folder. You find yourself with a window that has four com-
partments in the top half (Figure 2.2).

You will have to put some order in the list of programs under ”others”
on the far right. Select any and right-clic it. You will have the option
of moving it to Source, Signal Processing, or Application. For now, you can
just place SignalGenerator under Source, the DummySignalProcessing under
Signal Processing and the FeedbackDemo under Application.

The bottom half of the window has two regions. The left part (”Param-
eters”) enables you to load a parameter file before launching. This will be
explained below. On the right, you can enter the IP address of the computer
hosting each module. By default, all modules are on the same computer, so
the IP is 127.0.0.1, for localhost. If you want to divide the modules among
two or three computers, this is where you define their location, so the oper-
ator knows where to access them.

5

Figure 2.2: BCI2000 Launcher

Select one module of each role (acquisition, processing, application) and
clic launch to set them up in a chain. You will always have to select exactly
one module of each when launching BCI2000.

Now you have another window (see figure 2.3). Clic ”Config” to bring
up the configuration options. These are all defined by the three modules
you have selected. Each module has its own set of options (or parameters).
The parameters are divided under different thumbnails, depending on their
definition. For instance, the parameters for visualization (mostly booleans
for ”visualize ...filter output”) are under the ”Visualize” thumbnail, while
filter parameters are all under ”Filtering”, in different sections (Fig 2.4).

Figure 2.3: BCI2000 operator

Each time you close the operator, the configuration is lost, so be sure to
save any configuration you are happy with. The saved configuration file is

6

Figure 2.4: BCI2000 configuration window

then loadable from the configuration window, or beforehand in the ”Param-
eter File” box of the BCI2000 launcher.

Now close the configuration window. If you clic on ”Set Config”, you
will see the application screen appear, as well as different windows. You can
then clic ”Start” to launch the acquisiton, signal processing and application
modules.

You can also start the different modules manually with the command
prompt by simply calling the ”start” command followed by the name of the
module and its IP. You must always start with the operator though; ”start
operat.exe”. You can also write a batch file. Some examples are in the
”batch” folder.

If everything went well, we can start working on the code. If not, it is
possible that your revision (the version of BCI2000 you have downloaded) is
not completely functional. Posting in the forum [1] will surely get you the
answer to your problem, but do not forget to check the wiki beforehand.

7

Chapter 3

Signal Source

As mentioned in the introduction, no modification will be made to the code
of the Biosemi2ADC module. If you are using another piece of hardware,
please refer to its manual [3] for installation of the acquisition module.

The Biosemi module offers quite a collection of parameters which can be
found under the ”Source” thumbnail in the configuration window. The most
important ones are:

1. SampleBlockSize: Defines the size of each block.

2. SamplingRate: The recording rate, in Hertz. Watch out for the Nyquist-
Shannon sampling theorem [12]. (To preserve a signal up to a certain
frequency, the sampling rate must be at least double that frequency)

3. TransmitChList: The channels you want to forward to the filter chain.
For instance, the external electrodes (EX) are relayed on channels 233
to 240 (EX1 : 233, EX2 : 234, ..., EX8 : 240).

You should also watch out for the number of channels (SourceCh) and
their gain/offset.

8

Chapter 4

Signal Processing

4.1 Introduction

In BCI2000, a processing module just calls a number of individual filters,
which makes it very easy to switch two filters or replace one by another.
Moreover, one filter can be used by many modules. The signal blocks are
transmitted automatically from one filter to another. Figure 4.1 shows a
diagram representing the structure of a signal processing module.

Figure 4.1: Signal Processing module

As an example, the Spatial
Filter is almost always used.
Each module that needs it just
calls it. There is no need to copy
it or duplicate the code. More
details can be found in Section
4.3.4.

We will start by creating the
signal processing module, which
groups the different filters to-
gether, and see how we can use
already created filters. Then
we’ll see how to create a new fil-
ter and integrate it to our signal
processing module.

9

4.2 The main module

To create a signal processing module, launch C++ Builder and create a
new project by clicking ”Project” → ”Add New Project...” and then
”Application”. This will also create a file and a form. You can close the
form and the file. You will be prompted with a message to save the file. Do
not; it is useless. Instead, create a new file by clicking ”File” → ”New”
→ ”Other...” and then ”Cpp file”. Copy the following code in the file (you
can copy/paste from almost any other Signal Processing main file), then
save the project (”File” → ”Save Project as”) in its own folder (under
”src/contrib/signalprocessing/”) and name it accordingly (the project is the
module). You will also be asked to save the file. You should give it the same
name.

Listing 4.1: YourProject.cpp

1 #include "PCHIncludes.h"
#pragma hdrstop

3

#include <vcl.h>
5 #include "CoreModuleVCL.h"

7 WINAPI
WinMain(HINSTANCE , HINSTANCE , LPSTR , int) {

9 try {
Application ->Initialize ();

11 CoreModuleVCL ().Run(_argc , _argv);
}

13 catch (Exception &exception) {
Application ->ShowException (& exception);

15 }
return 0;

17 }

The PCHincludes header is necessary for your module to be able to call
BCI2000 functions in order to follow the protocol (such as the ”Filter” func-
tion without which you could not use your filters). The pragma instruction
is a question of precompilation options. The ”vcl” includes are for the user
interface (Borland VCL Library).

The next step is to create a ”PipeDefinition” file. The name of the file is
important. Create a new ”Cpp file” in the same project and start by writing

10

the following lines:

Listing 4.2: PipeDefinition.cpp

1 #include "PCHIncludes.h"
#pragama hdrstop

3

#include "SpatialFilter.h"
5

Filter(SpatialFilter , 2.C);

This file is the description of the filter chain. Include all the filters you
want or need, and call them with the ”Filter” function. The ”2.C” part is
the order in which the filters will be set. The first digit should follow the
following protocol [4]:

1. filters in source modules

2. filters in processing modules

3. filters in applications

This means all filters called in the signal processing module will have a rank
of 2 (while application filters have a rank of 3). The filters are then applied
according to the relative alphabetical position of their letter (2.B comes be-
fore 2.E).

For now, the Spatial Filter is enough to test your module. You can add
other filters later.

The last step is to set up the links. Choose ”Project” → ”Add to
project” and choose the PipeDefinition file you’ve just created. Then repeat
this for all cpp files in the different folders under ”src/shared”. The reason for
this is because the ”PCHincludes” file you included is the tip of the iceberg
that is the hierarchy of files that compose BCI2000. It is possible that you
will not be using all of them, but it is easier to add everything than to sort
through them. If you miss any, you will be notified by C++ Builder at the
end of the compilation. It will say ”[Linker Error] unresolved external...” and
then the name of the missing file, followed by error codes.

You will also have to make sure the following options are correct. Clic
”Project” → ”Options”.

• Compiler: In the ”File name” field: ”..\..\..\shared\obj\bci2000.csm”

11

• Linker: Under Linking, the ”Use Dynamic RTL” box is not checked.

• Directories/Conditionals

– The ”Include path” field has the following, in any order:

∗ ..\..\..\shared

∗ ..\..\..\shared\accessors

∗ ..\..\..\shared\bcistream

∗ ..\..\..\shared\config

∗ ..\..\..\shared\fileio

∗ ..\..\..\shared\gui

∗ ..\..\..\shared\modules

∗ ..\..\..\shared\modules\signalprocessing

∗ ..\..\..\shared\types

∗ ..\..\..\shared\utils

∗ ..\..\..\shared\utils\Expression

∗ ..\..\..\extlib\matlab

∗ $ (BCB)\include

∗ $ (BCB)\include\vcl

∗ The folder containing your module (probably contrib\...)
– The ”Library path” field contains:

∗ $ (BCB)\lib
∗ $ (BCB)\lib\obj

– ”Intermediate output” = ”obj”

– ”Final output” = ”..\..\..\..\prog\” - This defines where your ex-
ecutable will be created. If you want it elsewhere, just change the
path, knowing that it is relative.

– ”Conditional defines” = ”MODTYPE=2” - The number is the
type of module (1 for acquisition, 2 for signal processing, 3 for
application)

You can now try compiling your project. Then open the BCI2000 launcher
again and move your module from the ”Other” box into the ”Signal Process-
ing” box. Repeat the same steps mentioned in the previous chapter.

12

4.3 The filters

Now that you have the signal processing module ready, you have to cre-
ate your own filters. Start by creating a new unit (”File” → ”New” →
”Unit”). Save it right away to change it’s name.

4.3.1 Header

Open the header (there is a thumbnail at the bottom of the window).
Include ”GenericFilter.h” and define your filter as a class inheriting from

”GenericFilter” (class YourFilter : public GenericFilter). This class is in-
herited to be sure you have implemented all necessary methods to fit the
BCI2000 protocol.

The filter requires three public methods (apart from the constructor and
destructor):

• virtual void Preflight(const SignalProperties&, SignalProperties&)
const;

• virtual void Initialize(const SignalProperties&, const SignalProper-
ties&);

• virtual void Process(const GenericSignal& Input, GenericSignal& Out-
put);

These methods are part of the BCI2000 protocol. They will be called in
turn when you start the whole process, the Preflight and Initialize methods
when you set the configuration, the Process method for each sample block
while the application runs.

You may also want to implement some optional methods of the Generic-
Filter class. For more information about these, check the wiki [6].

4.3.2 C++ File includes and declarations

Now switch back to the filter file (.cpp). Include ”PCHIncludes.h” and any
other file you might need (for those, you should open the ”src/shared” folder).

Keep #pragma hdrstop right after the inclusion of ”PCHIncludes.h” but
delete the other #pragma. Again, this is a precompiler command. You will
need ”using namespace std;” to activate i/o.

13

Then call ”RegisterFilter” with the name of your filter and its default
rank: ”RegisterFilter(<YourFilter>, 2.C)” for instance. You will be able to
place your filter anywhere afterwards, so do not spend time thinking about
the default rank.

If you have any parameters to your filter, you will have to declare them
in the constructor. They will then appear in the configuration window under
the specified thumbnail and section. This is done by writing

"BEGIN_PARAMETER_DEFINITIONS"

and

"END_PARAMETER_DEFINITIONS"

in the body of the constructor. Parameters are then declared between these
two instructions and following this protocol:

<Section> <type> <name>= <value> <default> <Min> <Max> // <Comment>

This can change if the type is a list or matrix. Everything is explained
in detail on the wiki [8]. The section should be Filtering, or maybe Visu-
alize if the parameter only changes the visual output. This serves to place
the parameter in the right thumbnail in the configuration interface of the
operator.

Each parameter must be in between quotes and separated by a coma,
even the last one before ”END PARAMETER DEFINITIONS”.

For instance:

Listing 4.3: Parameter definitions

1 BEGIN_PARAMETER_DEFINITIONS
"Filtering int frequency= 18 18 5 50"

3 "// the frequency of something in your filter",

5 "Filtering int box= 0 0 0 1"
"//this is a boolean parameter , it makes a →

↪→ checkbox because of the boundaries that →
↪→ allow only 0 or 1",

7 END_PARAMETER_DEFINITIONS

State variables, which are used somewhat like global variables for all three
modules, are defined in the same way, if you need some. More details are on
the wiki [9].

14

4.3.3 Necessary methods

Then comes the preflight method. It is called when you set the configuration.
Its purpose is mainly to check the different parameters. If you have bound
conditions, you should check them by using the Parameter function with the
name of the parameter. For instance: ”Parameter(”frequency”);” You can
also write special conditions, such as dependencies between two parameters.
States are also checked that way, but with the State function. The last
thing you should check (if it is important) is the correspondence between the
input and the output properties. This is done easily: ”OutputProperties =
InputProperties”, InputProperties and OutputProperties being the first and
second parameter of the Preflight method.

The Initialize method is called once at the beginning, just after the pre-
flight method. Any variable you need to initialize should be treated here.

Finally, the Process method is the core of your filter. This method is
called for each signal block. That means you do not need to create a loop
to work on the different blocks. Input is a two-dimensionnal matrix. The
first dimension represents the channels, the second the samples. The size of
the second dimension thus depends on the size of blocks you transmit. For
instance, if you transmit 4 channels at 32 samples/block, you will get a 4x32
matrix as Input for each call of Preflight.

4.3.4 included filters

This short list of filters may prove useful. Be sure to check your own list of
filters, as some may have been added.

• SpatialFilter - Applies a linear transformation to the signal.

• FFTFilter - Does a Fast Fourier Transform on the signal.

• Normalizer - Can modify the gain and offset of the signal. Can also
modify the signal to have a mean of zero.

• RandomFilter - Multiplies the signal by random zero-mean noise and
outputs the result to extra channels.

• LPFilter - A simple low-pass filter.

For more details on each filter, check the BCI2000 wiki [5].

15

There are other filters available. Just open the ”src/shared/modules/sig-
nalprocessing/” folder and open them in Borland C++ Builder to see what
they are about (there is a comment at the top of the code that explains the
filter’s use).

16

Chapter 5

Application

Figure 5.1: Applica-
tion module

The application module is the final step. It should
be the goal of your project. For instance, my
work consisted in implementing a game of pong as
biofeedback.

5.1 Application Main Setup

Close the existing project (”File” → ”Close all”)
before continuing. Creating a new project like you
did for your signal processing module:

1. ”Project” → ”Add New Project...”

2. Close the two windows without saving.

3. Create a new cpp file with the same code as in the signal processing
module.
(you can add a title by writing Application->Title = <your Application
Title>);

4. Add all shared files to the project, the same way you added them to
your signal processing module.

5. Check that the project options are the same as for the signal processing
module, except that ”MODTYPE=3” should replace ”MODTYPE=2”

17

6. ”Save project as” your application name in a new folder under con-
trib\Application \<yourAppName>.

5.2 Application Task

You can now create a new unit. Again, you can erase the ”#pragma pack-
age(smart init)” from the cpp file.

5.2.1 Header

In the header, you will need to include ”ApplicationBase.h”. Then you can
declare your application class. It has to inherit from ApplicationBase (pub-
lic derivation). It usually has the ”Task” suffix. For instance, the ”Pong”
application has a ”PongTask” class.

In the public field, you will have to declare the inherited methods as well
as the constructor and destructor:

• <Name of the class> (const GUI::GraphicDisplay∗ = NULL);

• virtual ∼ <Name of the class>();

• virtual void Preflight(const SignalProperties&, SignalProperties&)
const;

• virtual void Initialize(const SignalProperties&, const SignalProper-
ties&);

• virtual void Process(const GenericSignal&, GenericSignal&);

• virtual void StartRun();

• virtual void StopRun();

• virtual void Halt();

These methods will be explained later on.
In the private field, you will probably want a TForm pointer to create a

window and a couple of shapes and/or labels. These are all part of the Bor-
land VCL library mentioned in the requirements section (2.1). For instance,
the Pong game uses these:

18

class TForm ∗ window;

class Tlabel ∗ textLabel;

class TShape ∗ paddle1;

class TShape ∗ paddle2;

class TShape ∗ ball;

5.2.2 C++ File includes and declarations

You will have to include the usual ”PCHIncludes.h” and <vcl.h>. It is a good
idea to include ”Color.h” too. You may want to include ”Localization.h” if
you plan to translate your application.

You then have to register the filter, the same way you did the signal
processing one. The rank has to be 3 since it is an application filter.

5.2.3 Constructor and Destructor

The constructor has to inherit from ApplicationBase, as well as create the
class-typed attributes of your class. Here’s an example from my PongTask
class:

Listing 5.1: PongTask constructor

1 PongTask :: PongTask(const GUI:: GraphDisplay* inDisplay →
↪→)
: ApplicationBase(inDisplay),

3 window(new TForm(reinterpret_cast <TComponent *>(→
↪→ NULL))),

textLabel(new TLabel(window)),
5 ball(new TShape(window)),

The content of the constructor is basically the same as in the signal
processing filter. Start by defining your parameters and state variables if
you have any. The protocol is the same as before.

You can also start personalizing the application window (border, color,
etc.).

The Destructor should at least call the ”Halt” method and delete the
window (”delete window;”).

19

5.2.4 Main methods

The Preflight method is used the same way as in the filter. You should
at least call each Parameter (Parameter(”ParamName”);) to check the
boundaries. Check all other conditions with normal ”if” instructions. Also,
make good use of the ”bcierr” and ”bciout” output streams, knowing that
the first blocks the process, the second being just a warning.

The initialize method should set every Tform, Tshape or Tlabel param-
eters (size, color, visibility, position, etc.), and anything else you need to
be done before the application starts running. It is also a good place to
”transfer” the Parameters to variables.

The StartRun and StopRun are called when you ”Suspend” or ”Resume”
the application (StartRun is also called at the beginning). Usually they will
have a ”Pause” message appear or disappear in the middle of the screen. The
actual pause in the process is done automatically.

The Halt method is called when the application is stopped. It is mostly
used by the acquisition module, but you may have a use for it if your applica-
tion initiates asynchronous operations such as executing threads or acquiring
data.

The Process method is the same as for the signal processing filter. It is
the core method, but do not hesitate to create private methods to ”divide”
the work and have clean code. Remember that the function is called for each
block, so the timing is hard, since it depends on the sampling rate and the
sample block size, which are determined in the source module.

20

Chapter 6

Final step

Once all modules are implemented, you can build (Ctrl+ F9, or ”Project”→
”Make ...”) your module. Then open the launcher, and move your appli-
cation from ”Others” to the ”Application” box. Then choose the source and
the signal processing module and start the test!

Do not hesitate to open other applications and filters to get examples of
how things are done.

21

Bibliography

[1] BCI2000 forum. http://bbs.bci2000.org.

[2] BCI2000: Roadmap. http://www.bci2000.org/tracproj.

[3] BCI2000 wiki: ADC Contributions. http://www.bci2000.org/wiki/

index.php/Contributions:ADCs.

[4] BCI2000 wiki: Filter Chain. http://www.bci2000.org/wiki/index.

php/Programming_Reference:Filter_Chain.

[5] BCI2000 wiki: Filters. http://www.bci2000.org/wiki/index.php/

User_Reference:Filters.

[6] BCI2000 wiki: GenericFilter Class. http://www.bci2000.org/wiki/

index.php/Programming_Reference:GenericFilter_Class.

[7] BCI2000 wiki: Message protocol. http://www.bci2000.org/wiki/

index.php/Technical_Reference:BCI2000_Messages.

[8] BCI2000 wiki: Parameter Definition. http://www.bci2000.org/wiki/
index.php/Technical_Reference:Parameter_Definition.

[9] BCI2000 wiki: State Definition. http://www.bci2000.org/wiki/

index.php/Technical_Reference:State_Definition.

[10] BCI2000 wiki: BCI2000 Source Code. http://www.bci2000.org/

wiki/index.php/Programming_Reference:BCI2000_Source_Code.

[11] BCI2000 download page. http://bci2000.org/BCI2000/Download.

html.

[12] Wikipedia: Nyquist Shannon sampling theorem. http://en.wikipedia.
org/wiki/Nyquist-Shannon_sampling_theorem.

22

