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1 Introduction

Digital data-hiding appeared as an emerging tool for multimedia security,
processing and management. A tremendous amount of possible applications
have been recently reported that include copyright protection, tamper proof-
ing, content integrity verification and authentication, secret communications
(steganography) and watermark-assisted media processing such as multimedia
indexing, retrieval and quality enhancement [1].

Robust data-hiding is one of the key technologies for the above applications
that require reliable watermark decoding after different intentional and unin-
tentional attacks [2]. At the same time, it is facing two important problems
related to the host interference and the lack of information about the attacker
strategy at the encoder.

The design of host interference cancellation critically relies on the knowledge
of the host realization at the encoder. The main assumption of almost all
current data-hiding techniques consists in the availability of the host state
(realization, an original multimedia file) at the encoder assuming some fixed
attacker strategy. The related communications problem is the one considered
by Gel’fand and Pinsker [3]. The Gel’fand-Pinsker set-up is based on a random
binning argument contrarily to the classical random coding argument that
does not take into account the channel state information. Costa considered the
Gel’fand-Pinsker problem in a Gaussian set-up and mean squared distortion
criteria and demonstrated that the capacity of the Gaussian channel with
the Gaussian interfering host can be equal to the capacity of interference-free
communications [4]. It is important to note that the generation of the data-
hider codebook is based on a compensation parameter (parameter α in original
Costa paper) that takes into account attack statistics that correspond to the
variance of an additive white Gaussian noise (AWGN) in the Costa problem.
If the compensation parameter is optimally selected assuming the knowledge
of the attack channel variance, the Costa rate equals the channel capacity of
the AWGN channel. However, if this parameter is not optimal, the host plays
a crucial role in the system performance leading to a considerable rate loss.

Practical low-complexity implementations of the Costa set-up are based on
structured codebooks that use scalar (1-D)/vector (multidimensional) quan-
tizers/lattices and are known as Distortion-Compensated Dither Modulation

(DC-DM) [5] and Scalar Costa Scheme (SCS) [6]. It should also be pointed out
that both SCS and DC-DM completely disregard host statistics corresponding
to host probability density function (pdf) for watermark design using the ar-
gument that the variance of multimedia data is much larger than watermark
and noise variances. This is equivalent to a high-rate assumption in rate dis-
tortion theory that corresponds to the small distortion regime. In this case,
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the host pdf is considered to be flat (uniform) within quantization interval
which significantly simplifies the design and analysis of these methods. It also
corresponds to the assumption of very low watermark-to-image ratio (WIR).
This imposes some specific constraints on the system design that determine
its performance in the broad range of watermark-to-noise ratios (WNR).

The related problem of host-interference cancellation based on the above prin-
ciples refers to the knowledge of the noise variance at the encoder prior to the
transmission. That is not a case for the robust data-hiding where the attack
parameters are not available at the encoder and can be only estimated at
the decoder. To relax the lack of this information, a particular version of the
DC-DM known as a dither modulation (DM) completely disregards the ac-
tual noise variance in the attack channel and selects the constant value of the
compensation parameter equal to 1, which is only optimal for asymptotically
high-WNR regime.

Contrarily, the methods based on the spread spectrum (SS) principle sacrify
from the host interference since they do not take into account the host state
at the encoder. However, at the same time they demonstrate superior per-
formance at the low-WNR regime in contrast to the host pdf-independent
quantization-based methods [6]. Recently, Perez-Freire et. al. [7] demonstrated
that additional enhancement can be achieved by proper modeling of host pdf.
This group of methods can be also considered based on the random binning
argument assuming that the compensation parameter tends to zero.

The goal of this paper is to extend the Gel’fand-Pinsker set-up, where the host
realization is non-causally available only at the encoder, to the communica-
tions with extra side information about the host statistics at the decoder. The
overall objective is to relax the critical dependence of the Costa set-up on the
knowledge of the attack channel variance and to achieve good performance
at low- and high-WNR regimes simultaneously. In fact, as a consequence, we
want to theoretically confirm the possibility to develop a hybrid scheme that
can combine the best from quantization- and SS-based methods to perform
optimally under channel ambiguity.

In the related publications of Moulin and O’Sullivan [8,9], the authors use
similar set-up to consider data-hiding problem as information-theoretic game
between the data-hider and the attacker in the scope of the Gel’fand-Pinsker
problem with the maximum allowable embedding and attacking distortions.
The side information available at the encoder and decoder is considered in the
form of secret key and has a twofold role. First, it may be a cryptographic key
that is independent of the host. Second, the side information can be in some
dependence with the host signal forming a joint distribution that is of a par-
ticular interest in our analysis. Moreover, Moulin and Mihcak [10] have prac-
tically applied this framework to the analysis of data-hiding capacity of real
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images using the so-called parallel Gaussian decomposition where the image
is supposed to consist of a number of independent Gaussian channels. Thus,
the optimal data-hiding system performs the power allocation among these
channels to satisfy the imposed distortion constraints. The generic assump-
tions made there are, however, different from those used in our work, and so
the final methodology that we have followed, also differs. The main differences
consist in part of codebook design, generic character of side information and
applied decomposition. The generic side information possibly correlated with
the host data is considered to be symmetrically available at the encoder and
the decoder in the Moulin and O’Sullivan set-up. This enables a possibility of
optimal watermark power allocation among different channels. In our set-up,
we assume the availability of asymmetric or so-called partial side information
at the decoder that, being sub-optimal in terms of achievable rate, simpli-
fies the encoder structure and relaxes the critical dependence of the optimal
codebook design on the ambiguity concerning attack channel parameters that
can be of interest for numerous practical applications. Finally, Moulin and
Mihcak applied the generic parallel channel decomposition without provid-
ing any relationship to the statistics of the host data besides the assumption
that samples in the parallel channels are Gaussian. In our analysis, we follow
a similar decomposition of host data providing the so-called source splitting

with Gaussian mixture distribution [11]. However, the analysis of our set-up
refers to the link between global and local image statistics demonstrated on
a particular example of Laplacian distribution. This makes possible to have
a concrete implementation of the Moulin and O’Sullivan idea, where the hy-
pothetical side information is represented in the form of local data variances,
which are modeled using exponential distribution.

It should be also mentioned the set-up analyzed by Cover and Chiang [12]
who have considered a generic channel coding problem with asymmetrically
available side information. The main difference of this work with the set-up of
Cover and Chiang consists in the definition of channel where the side informa-
tion available at the encoder and decoder simultaneously defines the channel
state taking into account the physical origin of the available side information.
While only general information-theoretic argument was used in [12], the avail-
able side information is linked with the statistical properties of real images in
this work.

Finally, the extension of the Gel’fand-Pinker set-up to real channels was per-
formed by Cohen and Lapidoth [13] who have indicated that for the AWGN
channels the statistics of the host have no influence on the channel capacity.
This conclusion was deduced based on the assumption that the attack channel
pdf parameters (variance of the AWGN channel) is also perfectly available at
the encoder for the optimal selection of optimization parameter. Contrarily, if
there is a small deviation of the channel variance from those available at the
encoder, one might expect a considerable deviation of achievable rate from
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the channel capacity. We intend to show in this paper that the presence of
sequence correlated with host state on the side of decoder might relax this
critical impact. At the same time, it should be pointed out that if the at-
tack channel state is perfectly known at the encoder, the considered set-up
performance coincides with the results of Cohen and Lapidoth.

The paper has the following structure. The basic set-up of side information-
assisted data-hiding is considered in Section 2. The data-hiding concept with
the host state at the encoder based on the random binning argument is briefly
reviewed in Section 3 in the scope of generalized Gel’fand-Pinsker problem,
Costa Gaussian set-up and discrete approximation of the Costa problem. Sec-
tion 4 presents the source splitting principle and the corresponding relation-
ship between local and global stochastic image models. A new data-hiding
communications set-up with host state at the encoder and host statistics at
the decoder is presented in Section 5 and some known data-hiding methods are
considered as particular cases of this set-up. The experimental results demon-
strating the efficiency of the proposed approach in terms of achievable rates
are given in Section 6. Finally, Section 7 concludes the paper and presents
some future research perspectives.

Notations We use capital letters to denote scalar random variables X, bold
capital letters to denote vector random variables X, corresponding small let-
ters x and x to denote the realizations of scalar and vector random vari-
ables, respectively. The superscript N is used to designate length-N vectors
x = xN = [x[1], x[2], ..., x[N ]]T with kth element x[k]. We use X ∼ pX(x) or
simply X ∼ p(x) to indicate that a random variable X is distributed accord-
ing to pX(x). The mathematical expectation of a random variable X ∼ pX(x)
is denoted by EpX

[X] or simply by E[X]. Calligraphic fonts X denote sets
X ∈ X and |X | denotes the cardinality of set X . IN denotes the N ×N iden-

tity matrix. We also define the WIR as WIR = 10 log10
σ2

W

σ2
X

and the WNR as

WNR = 10 log10
σ2

W

σ2
Z

where σ2
X , σ2

W , σ2
Z represent the variances of host data,

watermark and noise, respectively.

2 Side information-aided data-hiding

This section presents the basic set-up of side information-aided digital data-
hiding. This set-up was first proposed by Voyatzis and Pitas in 1999 [14] and
was further extended and analyzed by Cannons and Moulin [15] in terms of
statistical detection performance evaluation.

The block-diagram of side information-aided data-hiding is shown in Figure 1.
This set-up corresponds to the classical data-hiding scenario where the data-
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hider has the access to the uniquely assigned secret key KN and to the non-
causal interference xN ∈ XN . We also assume thatXN is distributed according
to pXN (xN). A message m, key kN and non-causal host realization xN are used
by the encoder to produce a watermark wN . The watermark wN is embedded
into the host data xN , thus resulting in the watermarked data y′N . The attacker
attempting to deteriorate the reliable communications of the hidden message
applies certain attack to the watermarked data by passing y′N through the
attack channel p(yN |y′N).

The only difference with the classical set-up consists in the availability of the
side information SN = ψ(XN , KN) at the decoder representing some key-
dependent simplified representation of the host data. A function ψ(.) repre-
sents some hash or statistics that can be extracted from the host data XN

using a secret key KN . The hashing can represent some extraction and key-
dependent quantization of host statistics or features. It can for example be
scalar or vector subtractive dither quantization [16]. The key KN is chosen
from the corresponding alphabet KN where all keys are distributed uniformly.
The role of the key is to provide a source of randomness and to give the
data-hider an information advantage over the attacker.

The secret key and the side information SN ∈ SN are communicated to the
decoder via some private channel. The decoder combines this information with
the channel output Y N and produces the estimate of the original message
m̂. We will assume that the message m ∈ M is uniformly distributed over
M = {1, 2, ..., |M|}, with |M| = 2NR, where R is the data-hiding rate. It
is assumed that the stego and attacked data are defined on y′N ∈ Y ′N and
yN ∈ YN , respectively. The distortion function is defined as:

dN(xN , y′N) =
1

N

N
∑

i=1

d(xi, y
′
i), (1)

where d(xi, y
′
i) : X × Y ′ → R+ denotes the element-wise distortion between

xi and y′i.

Definition 1: A discrete memoryless data-hiding channel consists of five al-
phabets X , S, W , Y ′, Y ; probability transition matrix pY N |W N ,XN (yN |wN , xN)
corresponding to the covert channel communications of the watermark WN

through the host image XN , pY ′N |W N ,XN (y′N |wN , xN), and attack channel
pY N |Y ′N (yN |y′N) such that:

pY N |W N ,XN (yN |wN , xN) = Σy′NpY ′N |W N ,XN (y′N |wN , xN)pY N |Y ′N (yN |y′N).

The attack channel is subject to the distortion constraint DA:

∑

y′N∈Y ′N

∑

yN∈YN

dN(y′N , yN)pY N |Y ′N (yN |y′N)pY ′N (y′N) ≤ DA, (2)
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where pY N |Y ′N (yN |y′N) =
∏N

i=1 pY |Y ′p(yi|y′i).

Definition 2: A (2NR, N) code for data-hiding channel consists of message

set M = {1, 2, ..., 2NR}, encoding function:

φN : M×XN ×KN → WN , (3)

embedding function:
ϕN : WN ×XN → Y ′N , (4)

subject to the embedding distortion constraint DE:

1

|K|N |M|
∑

kN∈KN

∑

m∈M

∑

xN∈XN

dN(xN , ϕN(φN(m,xN , kN)))pXN (xN) ≤ DE (5)

and decoding function:

gN : YN ×KN × SN → M. (6)

It is important to note that the corresponding covert channel satisfies memo-
ryless properties:

pW N ,UN |XN ,KN (wN , uN |xN , kN) =
N
∏

i=1

pW,U |X,K(wi, ui|xi, ki). (7)

We define the average probability of error for (2NR, N) code as:

P (N)
e =

1

|M|
∑

m∈M
Pr[gN(Y N , KN , SN) 6= m|M = m]. (8)

Definition 3: A rate R = 1
N

log2 |M| is achievable for distortions (DE, DA),
if there exists a sequence of (2NR, N) codes with P (N)

e → 0 as N → ∞.

Encoder

Decoder

Hash function

Private

channel

NX NY
( , )N N Np y x w

ˆ( , , )N N Nm Y S K

NK

NKNS

NS

( , , )N N NW m X K

m

Fig. 1. Generalized block-diagram of side information-aided data-hiding.

We will refer to the case SN = 0 as blind data-hiding and to the case SN = XN

as non-blind data-hiding. The intermediate case when SN = ψ(XN , KN) is
known as semi-blind data-hiding [15]. The main idea behind the semi-blind
data-hiding consists in the necessity to have image dependent keys and a
decoder that is either operated by the content provider as in fingerprinting,
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or at least requires some communications with the content provider. In the
following, to simplify the notations we will consider only the communication
aspect of the problem and skip the dependence of the encoding, decoding and
hashing on the secret key implicitly assuming that the proper key management
is established among all these entities.

3 Host state at the encoder: host realization

3.1 Gel’fand-Pinsker problem

This problem can be formulated as a reliable communication of a message
m ∈ {1, 2, ..., |M|}, with |M| = 2NR, encoded into a sequence WN , over
the channel pY |W,X(y|w, x) and interference XN being known at the encoder
but not at the decoder. The corresponding discrete memoryless channel is
described by {W ,X , pY |W,X(y|w, x),Y} where the side information is assumed
to have a distribution pX(x) =

∏

pX(xi) (Figure 2). The problem is to find
the maximum rate of reliable communications R = 1

N
log2 |M|.

NX

( , )N NW m X
NY

m ( , )N N Np y x w ˆ( )Nm Y

Fig. 2. Gel’fand-Pinsker channel coding with side information at the encoder:
Pr[m 6= m̂(Y N )] → 0 as N → ∞.

Gel’fand and Pinsker [3] have shown using binning-based codebook construc-
tion that the capacity of this channel is:

C10
X = max

p(u,w|x)
[I(U ;Y ) − I(U ;X)] , (9)

where the maximization is over all auxiliary random variables U , such that
U → (W,X) → Y form a Markov chain. I(U ;Y ) and I(U ;X) correspond to
mutual information between the observed data Y and U , the host data X and
U , respectively. It was shown in [3] that the maximization is attained with
pU,W |X(u,w|x) such that W is deterministic given (U,X).

Here and in the following, we use the superscripts to denote the availability
(1 stands for ”available” and 0 for ”not available”) of corresponding states or
statistics used in the subscripts at the encoder and the decoder, respectively.
Therefore, in the above case, ”10” denotes the availability of the host state X
at the encoder but not at the decoder.
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Without going into deep details of the proof of (9) presented in [3], we demon-
strate the main considerations that define the achievable rate as the trade-off
in the probability of error at the encoder and decoder. Codebook consists of
J |M| codewords uN(m, j), m ∈ {1, 2, · · · , |M|}, j ∈ {1, 2, · · · , J} generated
independently at random according to the marginal distribution pU(.) and al-
located into |M| = 2NR bins with J = 2NR′

codewords in each bin for every
message m. R′ = 1

N
log2 J bits are used to describe the host at the encoder.

Encoder: Given the message m ∈ M and the host data xN , the encoder seeks
a codeword uN(m, j) such that (uN(m, j), xN) ∈ A∗(N)

ǫ (U,X) (see Appendix
A for the definition of typicality). If such a codeword uN(m, j) is found, the
encoder produces the watermark wN = φN(uN(m, j), xN).

The probability that there is no uN(m, j) that is strongly jointly typical with
xN should be bounded to guarantee encoder errorless performance:

Peenc
≤ e−2NR′

2−N [I(U ;X)+ε]

, (10)

where ε to be a small non-negative number and Peenc
→ 0 as N → ∞ and

ε → 0, if R′ > I(U ;X) or if J > 2N [I(U ;X)+ε]. This result suggests to have a
relatively large J in order to assure errorless performance of the encoder.

Decoder: Given the output of the channel yN , the decoder seeks a codeword
uN(m̃, j), such that (uN(m̃, j), yN) ∈ A

∗(N)
δ (U, Y ) in the set of all codewords

1 ≤ j ≤ J , 1 ≤ m ≤ |M|. If the decoder finds a unique jointly typical pair, it
declares that the sent message was m̂ = m̃. Otherwise, an error is declared.

The probability of error at the decoder can be bounded by:

Pedec
< 2N [R+R′]2−N [I(U ;K)−δ]. (11)

Thus, we require δ → 0, N → ∞ and R +R′ < I(U ;Y ) to have Pedec
→ 0.

Combining the rate constraints obtained for the errorless performance of the
encoder and decoder, one can provide the condition for the complete sys-
tem that guarantees errorless message communications, i.e., R < (I(U ;Y ) −
I(U ;X)), which corresponds to the result (9).

3.2 Costa problem

Costa considered the Gel’fand-Pinsker problem for the Gaussian context and
mean-square error distance [4]. The corresponding fixed channel pY |W,X(y|w, x)
is the Gaussian one with X ∼ N (0, σ2

X) and additive Z ∼ N (0, σ2
Z) (Figure 3).

The embedding distortion constraint is imposed in the form of E[W 2] ≤ σ2
W

and the attack distortion corresponds to the variance of the additive Gaussian
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noise σ2
Z . The auxiliary random variable was chosen as U = W + αX with

compensation parameter α that defines the achievable communications rate:

R(α, σ2
X) =

1

2
log2

σ2
W (σ2

W + σ2
X + σ2

Z)

σ2
Wσ

2
X(1 − α)2 + σ2

Z(σ2
W + α2σ2

X)
. (12)

Costa has shown that the optimal compensation parameter is αopt =
σ2

W

σ2
W

+σ2
Z

that requires the knowledge of σ2
Z at the encoder. In this case, the rate does

not depend on the host variance and:

R(αopt) = CAWGN =
1

2
log2

(

1 +
σ2

W

σ2
Z

)

(13)

that corresponds to the capacity of the AWGN channel without interference.

It is important to note that the number of codewords in each bin of the message
of the Gel’fand-Pinsker set-up is approximately equal to 2NI(U ;X). In the Costa

set-up, I(U ;X) = 1
2
log2

(

1 + α2 σ2
X

σ2
W

)

. This implies that the larger variance of

the host σ2
X , the larger number of codewords are needed at the encoder in each

bin. This means that for the capacity achieving scheme the codebook should
be extended to take into account larger number of host states.

NX

( , )N NW m X
NY

m

NZ

ˆ( )Nm Y

Fig. 3. Costa channel coding with the host state information at the encoder.
3.3 Scalar Costa Scheme: discrete approximation of Costa problem

The Costa set-up operates with the Gaussian random codebook that has ex-
ponential complexity. To reduce the complexity a number of practical data-
hiding algorithms use structured codebooks instead of random ones based on
the above considered binning argument [5,6]. These structured codebooks are
designed based on the quantizers (lattices) that finally should provide the in-
dependence of the watermark (considered to be the quantization noise) and
the host at the high-rate quantization regime (low-distortions).

The group of quantization-based methods follows an analogy between binning
strategy in the Gel’fand-Pinsker problem and the same principle of quanti-
zation attempting to approximate host-dependent selection of codewords [6].
The auxiliary random variable U in this set-up is approximated by:

U = W + α′X = α′Qm(X), (14)

leading to the jointly typical sequences (uN(m, j), xN) = (α′Qm(xN), xN),
where Qm(.) denotes a vector or scalar quantizer for the message m. In the
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simplified version of the SCS (or DC-DM) the quantizer is chosen to be the
uniform scalar one working at the high-rate assumption where the pdf of the
host signal X is assumed to tend towards a uniform distribution [5,6]. This
produces a uniformly distributed watermark W = U−α′X = α′Qm(X)−α′X.
The resulting stego data is obtained as:

y′ = x+ w = x+ α′(Qm(x) − x). (15)

In the above case of uniform quantizer, the watermark will be uniform, as a
consequence of the high-rate quantization assumption, with variance σ2

W =
α′2 ∆2

12
, where ∆ is the quantization step. Therefore, the selection of the rate

maximizing α designed for the Gaussian watermark in the Costa set-up is not
any more optimal in the above case (for this reason we use α′).

4 Stochastic host modeling

The quantization-based data-hiding methods completely disregard the host
statistics due to the high-rate assumption. Another “extrema” of data-hiding
host image modeling is a zero-mean i.i.d. Gaussian model. Although the Gaus-
sian model leads to nice closed-form solutions in many cases, the practical ap-
plication of this model to real images is very questionable. The development
of accurate and tractable stochastic image models is a very important and
challenging problem. The most simple and widely used class of stochastic im-
age models that represents the stochastic behavior of image coefficients after
decorrelation in transform domains (such as discrete cosine transform (DCT)
domain or discrete wavelet transform (DWT) domain) is an i.i.d. Generalized
Gaussian (GG) pdf. The GG model captures a global behavior of coefficients.
A particular case of this model is the Laplacian pdf which is obtained when
the shape parameter in the GG pdf is equal to 1 [17]. A lot of practical image
coders and denoisers are designed based on the Laplacian model [17,18].

Contrarily to global statistical models, local modeling is targeting accurate
description of statistical properties of data at a more fine level. In wavelet do-
main, zero-trees, Hidden Markov Trees, Gaussian Scale Mixture are examples
of such local image models. It was demonstrated that such models outperform
global ones in various image processing applications [19–21]. Remarkably, there
is a link that can be established between global and local statistical models
by means of hierarchical or doubly stochastic modeling [11,22].

According to a doubly stochastic model coefficients in the wavelet domain are
distributed independently according to a conditional distribution p(.|ζ), where
parameter ζ ∼ p(ζ). Assuming that ζ = σ2

X , one can esteblish such a link
between local and global stochastic models in the wavelet domain via parallel
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source splitting [11] based on the analysis of joint distribution p(x, σ2
X). Using

chain rule for probability one obtains:

pX,Σ2
X
(x, σ2

X) = pΣ2
X
(σ2

X)pX|Σ2
X
(x|σ2

X), (16)

where pΣ2
X
(σ2

X) represents the marginal variance distribution and the condi-

tional distribution pX|Σ2
X
(x|σ2

X) is supposed to capture local data statistical
behavior. The global data statistics correspond to the marginal distribution:

pX(x) =
∫ ∞

0
pX,Σ2

X
(x, σ2

X)dσ2
X =

∫ ∞

0
pX|Σ2

X
(x|σ2

X)pΣ2
X
(σ2

X)dσ2
X . (17)

A particular case of interest is given by the infinite Gaussian mixture model 2

[23]. According to this model, in our case pX|Σ2
X
(x|σ2

X) takes a form of zero-

mean conditional Gaussian distribution, i.e., pX|Σ2
X
(x|σ2

X) = 1√
2πσ2

X

e
− x2

2σ2
X .

Therefore, local image statistics are modeled as Gaussian while the global
distribution pX(x) is obtained specifying the variance distribution pΣ2

X
(σ2

X).
For the case that is of interest for various transform domains, the global Lapla-
cian pdf is obtained as a weighted mixture of zero-mean conditionally Gaus-
sian pdfs given exponentially distributed local variance pΣ2

X
(σ2

X) = λ1e
−λ1σ2

X ,
where λ1 is a scale parameter of the exponential distribution and:

pX(x) =
∫ ∞

0

1
√

2πσ2
X

e
− x2

2σ2
X λ1e

−λ1σ2
Xdσ2

X =

√

λ1

2
e−

√
2λ1|x|. (18)

This simple relationship provides a fundamental link between the global and
local statistics of image coefficients. Therefore, the same data can be consid-
ered to be locally zero-mean Gaussian with the variance distributed according
to the exponential pdf and, simultaneously, having the Laplacian global statis-
tics. The Gaussian mixture model is also the basis for the parallel channel

decomposition of stochastic image sources that makes it possible to use the
simple relationship for the Gaussian statistics. Moreover, properly selecting
the variance distribution, one can obtain a general class of Generalized Gaus-
sian distributions pX(x). However, in the following we will concentrate only
on the Laplacian case for demonstration purposes.

It is important to note that one of the most efficient lossy image compression
algorithms known as estimation-quantization codec [24] is based on this model.
In fact, omitting the practical details of side information communications be-
tween the encoder and the decoder, Hjorungnes, Lervik and Ramstad [11] were
the first who theoretically demonstrated that the rate gain between Laplacian
and infinite Gaussian mixture models can be as much as 0.312 bits/sample for
high-rate regime.

2 In general zero-mean assumption is not necessarily required.
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5 Partial side information at the decoder: host statistics

In this section, we extend the results of Section 3 to the case of side information
available at the decoder. Our set-up can be positioned between the above
considered Gel’fand-Pinsker set-up (9), where the side information in the form
of host realization is available non-causally at the encoder, and the Wolfowitz
set-up [25], where the host realization is available at both encoder and decoder
that results in the capacity:

C11
X = max

p(w|x)
I(W ;Y |X). (19)

In our “asymmetric” set-up, similarly to the formulation considered in [12],
the host realization is available at the encoder but only the realization of host
statistics is presented at the decoder as SN = σ2N

X according to Figure 1.
It is important to underline that the realization of the host parameters de-
scribing the Laplacian distribution is the N -length vector of local variances
that determines the statistics of the parallel Gaussian channels in the source
splitting model. Our motivation to select this side information as well as ex-
pectation of the gain in data-hiding application is based on the fact that
I(X; Σ2

X) ≤ 0 [12,22].

The particular problem of interest for our analysis is the Costa version of the
Gel’fand-Pinsker set-up. We consider here an extended version of the Costa
problem with the Laplacian host realization available at the encoder and the
corresponding host statistics in the form of variances of infinite Gaussian Mix-
ture model defined according to the source splitting (17) as partial side infor-
mation about the host available at the decoder (Figure 4).

2( , )Xp x s
2N
XS

2N
XS

NX

( , )N NW m X
NY

2ˆ( , )N N
Xm Y Sm ( , )N N Np y x w

Fig. 4. Channel coding with host state at the encoder and host statistics at the
decoder.

Therefore, besides the channel state XN availability, the encoder potentially
might have an access to Σ2N

X (shown in dashed line). However, we will concen-
trate our analysis on the case when XN is available at the encoder and Σ2N

X

is given at the decoder only. It is assumed that XN and Σ2N
X have the follow-

ing joint distribution p(xN ,Σ2N
X ) =

∏N
i=1 p(xi, σ

2
Xi

). The encoder produces a
sequence WN(m,XN) where m ∈ {1, 2, · · · , 2NR}. The decoding of message
m̂ is performed based on Y N and Σ2N

X as m̂(Y N ,Σ2N
X ). The resulting aver-

aged probability of error is 1
2NR

∑

m∈M Pr[m 6= m̂(Y N ,Σ2N
X )|M = m] where we

assume that all messages m are drawn uniformly over {1, 2, · · · , 2NR}.
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To derive a necessary intuition we first consider the above set-up for the DMC
without taking into account the host realization at the encoder as shown
in Figure 5. This implies that the watermark sequence WN(m) is generated
without taking into account host state XN similarly to the spread-spectrum
methods. Thus, WN is also independent with Σ2

X . In this case:

I(W ;Y,Σ2
X) = I(W ; Σ2

X) + I(W ;Y |Σ2
X) =

I(W ;Y |Σ2
X) = EΣ2

X

[

I(W ;Y |Σ2
X = σ2

X)
]

, (20)

where the second equality follows from the independence of W and Σ2
X .

2( , )Xp x s
2N
XS

NX

( , )N NW m X
NY

2ˆ( , )N N
Xm Y Sm ( , )N N Np y x w

Fig. 5. Channel coding with host statistics at the decoder.

In this case, the codebook generation is based on the random coding technique.
In particular, the encoder generates 2NR i.i.d. codewords from distribution
pW (wN) =

∏N
i=1 pW (wi) and sends the corresponding codeword WN(m) to the

channel to communicate the message m = {1, 2, · · · , 2NR}. The decoder seeks
a jointly typical triplet (wN(m̂), yN , σ2N

X ) ∈ A∗(N)
ǫ (W,Y,Σ2

X), (A∗(N)
ǫ (W,Y,Σ2

X)
denotes a set of jointly typical triplets (W,Y,Σ2

X)) based on the received vec-
tor yN and available side information σ2N

X over all wN(m̂). Here, we use the
definition of strong joint typicality (see Appendix A). If no such an m̂ exists or
if there is more than one, then an error is declared. The analysis of the prob-
ability of error, i.e., an event when m̂ 6= m, averaged over all codes includes
several possible cases. The first type of errors occurs when sent and received
sequences are not strongly jointly typical and the second type of errors corre-
sponds to the situation when a wrong codeword is strongly jointly typical with
the received signal. The probability of the first event tends to zero according
to the asymptotic equipartition property (AEP) [26]. To constrain the second
probability of error it is possible to show that the rate should be bounded by
R < I(W ;Y |Σ2

X) for sufficiently large N . This concludes the analysis of the
case when the host state is not available at the encoder.

In the extended set-up (Figure 4) with the host state available at the encoder,
one can use random binning to incorporate the host state into the codebook
design. Assuming that the host statistics Σ2N

X are available at both encoder
and decoder one has:

I(U ;Y,Σ2
X) − I(U ;X,Σ2

X) = I(U ; Σ2
X) + I(U ;Y |Σ2

X) − I(U ; Σ2
X)

−I(U ;X|Σ2
X) = I(U ;Y |Σ2

X) − I(U ;X|Σ2
X).

(21)
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Following the above analysis, we will extend the Gel’fand-Pinsker set-up (9)
to the case when the host statistics are available at the decoder and formulate
the result in a form of Conjecture 1.

Conjecture 1: If the host realization is non-causally available at the encoder

according to the Gel’fand-Pinsker problem for the fixed channel pY |W,X(y|w, x),
and if the host statistics that govern this particular host realization are known

at the decoder with (Xi,Σ
2
Xi

) to be pairwise i.i.d. p(xi, σ
2
Xi

), then the capacity

of this scheme is:

C10,01
X,Σ2

X

= max
p(u,w|x)

[I(U ;Y,Σ2
X) − I(U ;X)] , (22)

where C10,01
X,Σ2

X

denotes the capacity with the hostX available at the encoder and

the statistics Σ2
X available at the decoder. A brief sketch of the achievability

part of the conjecture 1 is given in Appendix A. In our analysis we assume the
joint distribution p(x, σ2

X , u, w, y) describing relationship between all random
variables to be p(x, σ2

X)p(u,w|x)p(y|w, x) = p(σ2
X)p(x|σ2

X)p(u|x)p(w|u, x)×
p(y|w, x) according to the source splitting model p(x, σ2

X) considered in Sec-
tion 4, encoder design p(u,w|x) considered by Gel’fand-Pinsker [3] and the
channel model p(y|w, x).

Before starting the consideration of particularities of the set-up considered
in Conjecture 1, it is important to discover its applicability to the analysis
to image data-hiding. In fact, it is widely realised in various image process-
ing applications that for instance in discrete wavelet transform domain local
variances of image coefficients are not independently distributed but are reali-
sations of a slowly varying random field [24]. Therefore, one needs to generalize
the above mentioned set-up to the case of channels with memory. In particular,
assuming local correlation structure of the variance field, the problem under
the analysis will have a blockwise memoryless structure. By other words, it is
supposed that image is divided on a set of N/L independent non-overlapping
blocks with correlated data inside each block. Similarly to [8], the following
definitions are required to perform the generalizations.

Definition 6. A blockwise memoryless attack channel subject to attacking
distortion constraint DA is a conditional p.m.f. pY N |Y ′N (yN |y′N) such that:

∑

y′L∈Y ′L

∑

yL∈YL

dL(y′L, yL)pY L|Y ′L(yL|y′L)pY ′L(y′L) ≤ DA. (23)

Moreover, for blocks y′Li = {y′Li, y
′
Li+1, ...y

′
Li+L−1}, 1 ≤ i ≤ N/L, such that
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y′N = {y′L1 , y′L2 , ..., y′LN/L} one has

pY N |Y ′N (yN |y′N) =
N/L
∏

i=1

pY L|Y ′L(yL
i |y′Li ). (24)

Definition 7. A blockwise memoryless covert channel subject to embedding
distortion constraint DE is a conditional p.m.f. pW L,UL|XL,KL(wL, uL|xL, kL)
such that:

∑

wL,uL,xL,kL

pW L,UL|XL,KL(wL, uL|xL, kL)pXL,KL(xL, kL) ≤ DE (25)

and

pW N ,UN |XN ,KN (wN , uN |xN , kN) =
N/L
∏

i=1

pW L,UL|XL,KL(wL
i , u

L
i |xL

i , k
L
i ). (26)

Under these specified conditions, the maximum achievable rate will be defined
similarly to [8] according to the following Conjecture.

Conjecture 2: A maximum achievable rate over the defined blockwise mem-
oryless channel is given by

C ′10,01
X,Σ2

X

= 1
L

max
p(uL,wL|xL)

[

I(UL;Y L,Σ2L
X ) − I(UL;XL)

]

. (27)

Since the proof of this conjecture closely follows the strategy presented in [8],we
refer the interested reader to this reference for more details.

It is important to note that according to the made assumptions of asymmet-
rically available side information about the channel state (host realization is
available at the encoder and only local variances are provided to the decoder)
the following statement is true. According to the link provided by parallel
source splitting between global i.i.d. statistical data models and condition-
ally i.i.d local models, the side information XL available to the encoder is
following a distribution p(xL) =

∏L
i=1 p(xi). Thus, without loss of optimality

it is assumed that the encoder in the blockwise memoryless case is equiva-
lent to the one designed for a memoryless case. Thus, one can conclude that
I(UL;XL) = LI(U ;X). Therefore, (27) can be rewritten as follows:

C ′10,01
X,Σ2

X

= 1
L

max
p(u,w|x)

[

I(UL;Y L,Σ2L
X ) − LI(U ;X)

]

, (28)
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Moreover, further considering I(UL;Y L,Σ2L
X ) one obtains:

I(UL;Y L,Σ2L
X ) = H(UL) −H(UL|Y L,Σ2L

X )

=
L
∑

i=1

H(Ui) −
L
∑

i=1

H(Ui|U i−1, Y L,Σ2L
X ) (29)

=
L
∑

i=1

H(Ui) −
L
∑

i=1

H(Ui|Y L,Σ2L
X ) (30)

=
L
∑

i=1

H(Ui)) −
L
∑

i=1

H(Ui|Y1, ..., Yi, ...YL,Σ
2
X1
, ...,Σ2

Xi
, ...Σ2

XL
) (31)

≥
L
∑

i=1

H(Ui) −
L
∑

i=1

H(Ui|Yi,Σ
2
Xi

) (32)

= LH(U) − LH(U |Y,Σ2
X), (33)

where (29) is obtained based on the encoder structure and chain rule for
entropy [26], where U i−1 = {U1, U2, ..., Ui−1}; (30) follows from the i.i.d. gen-
eration of the codewords at the encoder; (32) is obtained since conditioning
reduces entropy.

Therefore, it is possible to bound (27) as follows:

C ′10,01
X,Σ2

X

≥ max
p(u,w|x)

[I(U ;Y,Σ2
X) − I(U ;X)] . (34)

Thus, one can claim that purely memoryless consideration of the problem of
hidden information transfer maximization over a blockwise memoryless chan-
nel with state information asymmetrically available to encoder and decoder is
lower bounded by the capacity of such a memoryless channel.

In the remaining part of the paper we will investigate some particular aspects
of the obtained lower bound.

First, it should be noticed that Σ2
X → X → U form a Markov chain. Thus Σ2

X

and U are independent given X and consequently I(U ; Σ2
X |X) = 0. Therefore,

one can further develop (22) as:

I(U ;Y,Σ2
X) − I(U ;X) = I(U ;Y,Σ2

X) − I(U ;X) − I(U ; Σ2
X |X)

= I(U ;Y,Σ2
X) − I(U ;X,Σ2

X) = I(U ;Y |Σ2
X) − I(U ;X|Σ2

X),
(35)

where the last equation follows from (21).
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Substituting (35) into (22), one obtains:

C10,01
X,Σ2

X

= max
p(u,w|x)

[I(U ;Y |Σ2
X) − I(U ;X|Σ2

X)]

= Ep
Σ2

X

[

max
p(u,w|x)

[I(U ;Y |Σ2
X = σ2

X) − I(U ;X|Σ2
X = σ2

X)]

]

=
∫∞
0 pΣ2

X
(σ2

X)

[

max
p(u,w|x)

[I(U ;Y |Σ2
X = σ2

X) − I(U ;X|Σ2
X = σ2

X)]

]

dσ2
X ,

(36)

where the expectation is performed with respect to the distribution of host
statistics pΣ2

X
(σ2

X).

Contrarily, in the case when the host statistics are available at the encoder
(dashed line in Figure 4), the above set-up should also incorporate this infor-
mation in the design of the encoder defined by p(u,w|x, σ2

X) leading to the
capacity C10,11

X,Σ2
X

:

C10,11
X,Σ2

X

= max
p(u,w|x,σ2

X
)

[

I(U ;Y |Σ2
X) − I(U ;X|Σ2

X)
]

, (37)

the analysis of which is out of the scope of this paper. The particularities of
this set-up have been considered by Moulin and O’Sullivan [8]. In our formula-
tion, this result follows from the distribution p(x, σ2

X)p(u,w|x, σ2
X)p(y|w, x) =

p(σ2
X)p(x|σ2

X)p(u|x, σ2
X)p(w|u, x, σ2

X)p(y|w, x). It differs from the set-up de-
fined in conjecture 1 by the design of auxiliary random variable p(u|x, σ2

X)
and watermark generation part p(w|u, x, σ2

X) that potentially might require
to provide an optimal power allocation according to the available statistics
Σ2

X .

It should be also pointed out that:

I(U ;Y |Σ2
X) − I(U ;X|Σ2

X)

= H(U |Σ2
X) −H(U |Y,Σ2

X) −H(U |Σ2
X) +H(U |X,Σ2

X)

= H(U |X,Σ2
X) −H(U |Y,Σ2

X)

≤ H(U |X,Σ2
X) −H(U |Y,X,Σ2

X)

= I(U ;Y |X,Σ2
X) ≤ I(W ;Y |X,Σ2

X),

(38)

where the first inequality is due to the reduction of entropy by conditioning
and the last one is the consequence of data processing inequality [26].

Thus, C10,01
X,Σ2

X

is less than the capacity if both encoder and decoder have access

to XN and the decoder to Σ2N
X , i.e.:

C11,01
X,Σ2

X

= max
p(w|x)

I(W ;Y |X,Σ2
X), (39)
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and if both encoder and decoder have access to XN and Σ2N
X , i.e.:

C11,11
X,Σ2

X

= max
p(w|x,σ2

X
)
I(W ;Y |X,Σ2

X), (40)

that is an equivalent of the Wolfowitz problem (19).

Consider the expectation term in (36) for the fixed statistics Σ2
X = σ2

X under
the AWGN attack that corresponds to the Gaussian set-up investigated by
Costa. In this case, the internal maximization problem can be expressed as
the rate R(α, σ2

X) in (12).

Obviously, if the noise variance is perfectly known at the encoder, the Costa
set-up reaches the channel capacity and there is no real necessity to use the
host statistics at the decoder. However, if the attacking channel state is un-
known at the encoder, the selection of optimal α for all possible attacks even
in the scope of the AWGN scenario is an ambiguous problem. In this paper,
we assume that the data-hider knows the attack distribution but the attack
variance is an unknown parameter that can vary from one application to an-
other. In this paper, we will address the Gaussian attack that is shown to be
the worst case attack against Costa set-up within the class of additive noise
attacks according to the information-theoretic game [9].

Therefore, for the generic α and corresponding rate R(α, σ2
X) (12), the equa-

tion (36) can be rewritten as:

R10,01
X,Σ2

X

(α) =
∫ ∞

0
R(α, σ2

X)pΣ2
X
(σ2

X)dσ2
X , (41)

where the defined rate can only approach channel capacity for the optimal
selection of α since R(α = αopt, σ

2
X) = CAWGN according to Costa results [4].

Finally, it should be pointed out that the following inequality holds:

R10,01
X,Σ2

X

(α) ≤ R(αopt) (42)

with the equality for α = αopt. The equality follows from the fact that for the
informed encoder, that is aware of the noise variance, α = αopt and R(αopt)
coincides with CAWGN according to (13) that does not depend on the host
variance, i.e., R(αopt, σ

2
X) = R(αopt). Thus:

R10,01
X,Σ2

X

(αopt) = R(αopt)
∫ ∞

0
pΣ2

X
(σ2

X)dσ2
X = CAWGN . (43)

In the following, we will consider some particular cases of different α selection
to link our new set-up with several well-known data-hiding techniques.
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5.1 SS data-hiding: host statistics at the decoder

In the following, we will consider the SS data-hiding as a particular case of
the Costa set-up when α = 0. In this case, the auxiliary random variable
U = W + αX = W is host independent (no host state is taken into account
for the design of the watermark at the encoder).

This choice of the compensation parameter corresponds to the asymptotic case
of very low-WNR regime when σ2

Z → ∞. For these specific conditions, the SS
data-hiding is known to approach the capacity of the AWGN channel.

The corresponding rate (12) for α = 0 is:

R(0, σ2
X) =

1

2
log2

(

1 +
σ2

W

σ2
X + σ2

Z

)

(44)

that represents the well-known result for the capacity of SS systems.

Therefore, to approach the capacity of the Gel’fand-Pinsker problem for the
Gaussian set-up at the low-WNR it is sufficient to have only one codeword
in each message bin since I(U ;X) = 0 and 2NI(U ;X) = 1. This means that
the selection of the codeword W is host-independent and the classical SS-type
communications based on the random coding can approach capacity. However,
at the high-WNR regime this scheme sacrifices from the considerable host
interference that requires to increase the amount of codewords in each bin
depending on the host statistics (variance).

Under this assumption, equation (41) represents the rate of spread-spectrum
data-hiding with side information about host statistics at the decoder.

Conjecture 3: If the Laplacian host realization is not taken into account at

the encoder and the host statistics are used at the decoder according to the

source splitting model, then the achievable rate of the scheme is:

R10,01
X,Σ2

X

(0) =
∫ ∞

0

1

2
log2

(

1 +
σ2

W

σ2
X + σ2

Z

)

pΣ2
X
(σ2

X)dσ2
X . (45)

5.2 DM data-hiding: host statistics at the decoder

By analogy with the DM (α′ = 1), we will also recall the Costa set-up for
α = 1. This corresponds to the encoder adaptation to the asymptotic situation
of very high-WNR regime when σ2

Z → 0 and α → 1. For this conditions, the
DM is known to approach the capacity of the AWGN channel using high-
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dimensional lattices (we neglect here 1.53 dB shaping loss due to uniform pdf
of the watermark contrarily to the Gaussian pdf for the scalar case) [27].

In this case, the Costa auxiliary random variable U = W+αX = W+X. Thus,

I(U ;X) = 1
2
log2

(

1 +
σ2

X

σ2
W

)

which requires an infinite number of codewords for

each message bin when σ2
X → ∞. Obviously, the design of the watermark W

is host-state-dependent and the capacity achieving scheme is based on the
random binning argument.

The corresponding rate (12) for α = 1 is:

R(1, σ2
X) =

1

2
log2

(

σ2
W

σ2
Z

+
σ2

W

σ2
X + σ2

Z

)

. (46)

Conjecture 4: If the Laplacian host realization is taken into account at the

encoder based on the random binning argument and the host statistics are used

at the decoder according to the source splitting model, then the achievable rate

of the scheme is:

R10,01
X,Σ2

X

(1) =
∫ ∞

0

1

2
log2

(

σ2
W

σ2
Z

+
σ2

W

σ2
X + σ2

Z

)

pΣ2
X
(σ2

X)dσ2
X . (47)

6 Experimental results

To perform a fair comparison of the proposed approach we will compare differ-
ent methods under the AWGN attack. Figure 6 summarizes the known results
for the Costa set-up with the optimal selection of the compensation parame-
ter in order to approach the capacity of the AWGN channel (13). We present
on the same plot the performance of practical discrete approximations of the
Costa scheme based on the binary-SCS with correspondent optimally selected
compensation parameter and the binary DM [6] as well as the performance
of the SS-based methods for WIR=-6 dB and WIR=-16 dB for Gaussian and
Laplacian hosts.

The difference in the achievable rates for the SS-based methods between Gaus-
sian and Laplacian hosts is not significant. It manifests itself only in the high-
WNR regime. Since the host signal is acting as the interference to the water-
mark, the achievable rate is higher for the Laplacian host since its interference
influence is smaller in comparison to the Gaussian host with the same variance.

To investigate the impact of the partial side information at the decoder accord-
ing to the proposed framework we performed the analysis of the uninformed
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Fig. 6. Achievable rates of Costa set-up, SCS, DC-DM and SS for WIR=-6 dB and
WIR=-16 dB in assumption of Gaussian and Laplacian hosts.

decoder in terms of host statistics according to the Costa rate (12) for various
values of the compensation parameter α and two WIRs equal to -6 dB and -16
dB shown in Figures 7 and 9, respectively. The achievable rates of Costa set-up
with partial side information at the decoder R10,01

X,Σ2
X

(α) according to (41) for

WIR=-6 dB and WIR=-16dB are obtained by numerical integration and are
presented in Figures 8 and 10, respectively. The difference R10,01

X,Σ2
X

(α) − R(α)

is shown in Figures 11 and 12 for WIR=-6 dB and WIR=-16 dB, respectively.

For α = 0 that corresponds to the SS-based data-hiding, R(0) approaches
channel capacity at the low-WNR (Figures 7,9) for both WIRs. However, at
the high-WNR regime, the host variance has a crucial impact on the sys-
tem performance that is observed as a considerable rate decrease (especially
for WIR=-16 dB). Using partial side information at the decoder, the rate
R10,01

X,Σ2
X

(0) is significantly increased at the high-WNR regime for both WIRs

with respect to the rate R(0).

Considering another asymptotic case of α = 1, which corresponds to the DC-
DM-based selection of compensation parameter and scheme adaptation to the
high-WNR, we observe that R(1) approaches the AWGN channel capacity.
Contrarily, at the low-WNR regime, its performance is considerably degraded
due to the overestimated number of codewords in each message bin and a
corresponding high probability of error at the decoder attempting to seek a
jointly typical uN(m, j) and yN . The proposed set-up R10,01

X,Σ2
X

(1) again outper-

forms R(1) in this case.

Assuming the targeted range of operational WNRs to be [−5; 10] dB one
can select the compensation parameter in the range of 0.2 ≤ α ≤ 0.4 to
resolve the trade-off between the host interference cancellation and system
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robustness under attack channel ambiguity. This selection of α requires a
limited number of codewords in each bin to cope with the host interference
cancellation problem and an informed “adaptive” decoder that will perform
the estimation of “channels goodness” prior to the decoding. The design of
practical data-hiding schemes based on the proposed set-up is an important
and challenging problem that will be a subject of our future research.
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Fig. 7. Achievable rates of Costa set-up R(α, σ2
X) for Gaussian host with different

α and WIR=-6 dB.

0

0.5

1.0

1.5

2.0

2.5

−15 −10 −5 0 5 10 15C
ap

ac
ity

/a
ch

ie
va

bl
e

ra
te

[b
it/

el
em

en
t]

WNR [dB]

Capacity AWGN

R
10,01

X,Σ2

X

(α = 0)

R
10,01

X,Σ2

X

(α = 0.2)

R
10,01

X,Σ2

X

(α = 0.4)

R
10,01

X,Σ2

X

(α = 0.6)

R
10,01

X,Σ2

X

(α = 0.8)

R
10,01

X,Σ2

X

(α = 1)

Fig. 8. Achievable rates of Costa set-up with partial side information at the decoder
R

10,01
X,Σ2

X

(α) for WIR=-6 dB.

0

0.5

1.0

1.5

2.0

2.5

−15 −10 −5 0 5 10 15C
ap

ac
ity

/a
ch

ie
va

bl
e

ra
te

[b
it/

el
em

en
t]

WNR [dB]

Capacity AWGN
R(α=0)
R(α=0.2)
R(α=0.4)
R(α=0.6)
R(α=0.8)
R(α=1)
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X) for Gaussian host with different
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7 Conclusions and future work

In this paper, we considered robust data-hiding with host state available at the
encoder and partial side information at the decoder. We demonstrated that the
knowledge of host statistics at the decoder can relax the critical requirements
of quantization-based methods concerning attack channel statistics ambiguity
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at the encoder. In our analysis we have considered two well-known set-ups
based on the SS and DC-DM techniques. Traditionally, SS-based methods are
considered as a particular case of the Costa set-up when α is fixed and equal to
zero disregarding the actual WNR that corresponds to the encoder adaptation
to the low-WNR regime. The DC-DM is considered as an asymptotic case
when α = 1.

In this paper, the mismatch in the assumption concerning α and operational
WNR is compensated by the proper modeling of host at the decoder that
considerably increases the performance of the SS-based methods at the high-
WNR regime as well as the performance of quantization-based methods at the
low-WNR regime.

Following the Gel’fand-Pinsker binning strategy, we have investigated the pro-
posed asymmetric set-up for various values of α. When α = 0, each message
has only one codeword in each bin disregarding host state. For small values of
α ≤ 0.4 and the side information at the decoder, one can find a good trade-off
between the approaching capacity at the low-WNR regime and compensation
of host interference at the high-WNR regime.

The future extensions include two main lines of research. New practical quanti-
zation-based methods can be designed taking into account host statistics and
the work on this emerging issue is a subject of our ongoing research.

Amplitude scaling, or so-called value-metric attack, or equivalently fading is
one more important problem of practical quantization-based algorithms. We
believe that using the proposed approach one can also find a solution to this
problem under proper watermark power control.

It would be also interesting to analyse the rate loss due to the mismatch
between host statistics at the encoder and decoder, the so-called imperfect
side information, that should be an important issue for practical data-hiding
schemes.
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Appendix A

We briefly consider here the achievability part of Conjecture 1. The main idea
is to resolve the trade-off between the number of codewords needed at the
encoder at each bin of the message to cancel host interference and the number
of uniquely distinguishable codewords at the decoder.

We assume that m ∈ {1, 2, ..., |M|}, j ∈ {1, 2, ..., J} with |M| = 2NR and
J = 2NR′

.

Code construction: Introduce an auxiliary random variable U with alphabet
U via pU |X(.). Generate J |M| codewords uN(m, j) independently at random
according to the marginal pU(.) and allocate them into |M| bins with J = 2NR′

codewords in each bin for every message m.

Encoder: Given the message to be sent m and host signal xN , the encoder
seeks a codeword uN(m, j) such that (uN(m, j), xN) ∈ A∗(N)

ǫ (U,X), i.e., the
encoder seeks a jointly typical pair (uN(m, j), xN) in the set of strongly jointly
typical sequences A∗(N)

ǫ (U,X). Here, we use the definition of the strongly typ-

ical set [26], p. 358 A∗(N)
ǫ (X) with respect to pX(.) that is the set of N -tuples

xN satisfying:

A∗(N)
ǫ (X) =



















xN : for all a ∈ X
N(a|xN) = 0, if pX(a) = 0,
∣

∣

∣

1
N
N(a|xN) − pX(a)

∣

∣

∣ < ǫ
|X | ,

(48)

where N(a|xN) is the number of a occurrences in the sequence xN and ǫ is an
arbitrary small positive constant.

The strongly jointly typical sequences (xN , yN) with respect to the joint dis-
tribution pXY (.) on X × Y satisfy:
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A∗(N)
ǫ (X,Y ) =



















(xN , yN) : for all a ∈ X , b ∈ Y ,
N(a, b|xN , yN) = 0, if pXY (a, b) = 0,
∣

∣

∣

1
N
N(a, b|xN , yN) − pXY (ab)

∣

∣

∣ < ǫ
|X ||Y| ,

(49)

where N(a, b|xN , yN) is the number of the pair (a, b) occurrences in the pair
of sequences (xN , yN).

Therefore, the message m defines the bin and the host realization selects a
particular uN(m, j) from this bin. If such a codeword uN(m, j) is found, the
encoder produces the watermark wN = fN(uN(m, j), xN).

We must bound the probability that there is no codeword that is strongly
jointly typical with XN . In fact, this probability should go to zero as N → ∞
and ǫ→ 0.

The probability that the given sequence xN has not a jointly typical pair
with an independently chosen codeword uN(m, j), j = {1, 2, · · · , 2NR′} for

a given message m is
∏2NR′

j=1 Pr[(UN(m, j), xN) /∈ A∗(N)
ǫ (U,X)]. The average

probability for all XN coming from the distribution pXN (xN) and belonging
to xN ∈ A∗(N)

ǫ (X) is:

Pe1 =
∑

xN∈A
∗(N)
ǫ (X)

pXN (xN)
2NR′

∏

j=1

Pr[(UN(m, j), xN) /∈ A∗(N)
ǫ (U,X)] (50)

=
∑

xN∈A
∗(N)
ǫ (X)

pXN (xN)
[

1 − Pr[(UN(m, j), xN) ∈ A∗(N)
ǫ (U,X)]

]2NR′

(51)

From Lemma 13.6.2 [26], p. 359, we have:

Pr[(UN(m, j), xN) ∈ A∗(N)
ǫ (U,X)] ≥ 2−N [I(U ;X)]+δ, (52)

where δ goes to zero as ǫ→ 0 and N → ∞.

Substituting this in (51) and using inequality (1 − x)n ≤ e−nx, we have:

Pe1 ≤ e−2NR′

2−N [I(U ;X)+δ]

, (53)

which goes to 0 as N → ∞ if R′ > I(U ;X) or equivalently if J > 2N [I(U ;X)+δ].
This suggests to have a relatively large number J .

Decoder: Given the signal on the output of the channel yN and the side
information σ2N

X , the decoder seeks a codeword uN(m, j) satisfying

(uN(m, j), yN , σ2N
X ) ∈ A∗(N)

ǫ (U, Y,Σ2
X)
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in the set of all codewords 1 ≤ j ≤ J , 1 ≤ m ≤ |M|, i.e., among all J |M|
codewords. If the decoder finds only one unique jointly typical triple, it declares
that the sent message was m̂ = m. Otherwise, an error is declared.

Suppose yN ∈ A∗(N)
ǫ (Y ) and the decoder finds an m̃ = m and j̃ such that

(uN(m̃, j̃), yN , σ2N
X ) ∈ A∗(N)

ǫ (U, Y,Σ2
X). Denote probability of this event as

Pr[(UN(m̃, j̃), yN , σ2N
X ) ∈ A∗(N)

ǫ (U, Y,Σ2
X)]. Excluding the correct m̂ = m, the

total number of codewords uN(m̃, j̃) for which m̂ 6= m is (2NR − 1)2NR′

or
(|M| − 1)J . Therefore, the total probability of such kind of error is:

Pe2 = (2NR − 1)2NR′

Pr[(UN(m̃, j̃), yN , σ2N
X ) ∈ A∗(N)

ǫ (U, Y,Σ2
X)]. (54)

According to [26], the following upper bound exists: Pr[(UN(m̃, j̃), yN , σ2N
X ) ∈

A∗(N)
ǫ (U, Y,Σ2

X)] ≤ 2−N [I(U ;Y,Σ2
X

)−δ]. Therefore, the probability Pe2 can be
bounded as:

Pe2 < 2N [R+R′]2−N [I(U ;Y,Σ2
X

)−δ]. (55)

Thus, we require that ǫ is small, N is large and R+R′ < I(U ;Y,Σ2
X) to have

Pe2 → 0. Obviously, the higher |M| and J , the higher probability of incorrect
decoding.

Encoder-decoder trade-off in selection of J : The selection of J should re-
solve the encoder/decoder trade-off for a given |M|. From one side J should be
sufficiently large to make the encoder failure probability low, i.e., to guarantee
the existence of one jointly typical pair at the encoder J2−NI(U ;X) > 1 or equiv-
alently 1

N
log2 J > I(U ;X). From the other side, J should be small enough to

avoid the failure of the decoder, i.e., 1
N

log2 |M|+ 1
N

log2 J < I(U ;Y,Σ2
X). If J

is chosen correctly, R < I(U ;Y,Σ2
X) − I(U ;X) that corresponds to equation

given in Conjecture 1.
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